scholarly journals A European daily high-resolution observational gridded data set of sea level pressure

2011 ◽  
Vol 116 (D11) ◽  
Author(s):  
E. J. M. van den Besselaar ◽  
M. R. Haylock ◽  
G. van der Schrier ◽  
A. M. G. Klein Tank
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Aleksandar Sekulić ◽  
Milan Kilibarda ◽  
Dragutin Protić ◽  
Branislav Bajat

AbstractWe produced the first daily gridded meteorological dataset at a 1-km spatial resolution across Serbia for 2000–2019, named MeteoSerbia1km. The dataset consists of five daily variables: maximum, minimum and mean temperature, mean sea-level pressure, and total precipitation. In addition to daily summaries, we produced monthly and annual summaries, and daily, monthly, and annual long-term means. Daily gridded data were interpolated using the Random Forest Spatial Interpolation methodology, based on using the nearest observations and distances to them as spatial covariates, together with environmental covariates to make a random forest model. The accuracy of the MeteoSerbia1km daily dataset was assessed using nested 5-fold leave-location-out cross-validation. All temperature variables and sea-level pressure showed high accuracy, although accuracy was lower for total precipitation, due to the discontinuity in its spatial distribution. MeteoSerbia1km was also compared with the E-OBS dataset with a coarser resolution: both datasets showed similar coarse-scale patterns for all daily meteorological variables, except for total precipitation. As a result of its high resolution, MeteoSerbia1km is suitable for further environmental analyses.


2012 ◽  
Vol 8 (5) ◽  
pp. 1681-1703 ◽  
Author(s):  
F. Schenk ◽  
E. Zorita

Abstract. The analog method (AM) has found application to reconstruct gridded climate fields from the information provided by proxy data and climate model simulations. Here, we test the skill of different setups of the AM, in a controlled but realistic situation, by analysing several statistical properties of reconstructed daily high-resolution atmospheric fields for Northern Europe for a 50-yr period. In this application, station observations of sea-level pressure and air temperature are combined with atmospheric fields from a 50-yr high-resolution regional climate simulation. This reconstruction aims at providing homogeneous and physically consistent atmospheric fields with daily resolution suitable to drive high resolution ocean and ecosystem models. Different settings of the AM are evaluated in this study for the period 1958–2007 to estimate the robustness of the reconstruction and its ability to replicate high and low-frequency variability, realistic probability distributions and extremes of different meteorological variables. It is shown that the AM can realistically reconstruct variables with a strong physical link to daily sea-level pressure on both a daily and monthly scale. However, to reconstruct low-frequency decadal and longer temperature variations, additional monthly mean station temperature as predictor is required. Our results suggest that the AM is a suitable upscaling tool to predict daily fields taken from regional climate simulations based on sparse historical station data.


Ocean Science ◽  
2015 ◽  
Vol 11 (3) ◽  
pp. 483-502 ◽  
Author(s):  
N. Tim ◽  
E. Zorita ◽  
B. Hünicke

Abstract. Detecting the atmospheric drivers of the Benguela upwelling systems is essential to understand its present variability and its past and future changes. We present a statistical analysis of a high-resolution (0.1°) ocean-only simulation driven by observed atmospheric fields over the last 60 years with the aim of identifying the large-scale atmospheric drivers of upwelling variability and trends. The simulation is found to reproduce well the seasonal cycle of upwelling intensity, with a maximum in the June–August season in North Benguela and in the December–February season in South Benguela. The statistical analysis of the interannual variability of upwelling focuses on its relationship to atmospheric variables (sea level pressure, 10 m wind, wind stress). The relationship between upwelling and the atmospheric variables differ somewhat in the two regions, but generally the correlation patterns reflect the common atmospheric pattern favouring upwelling: southerly wind/wind stress, strong subtropical anticyclone, and an ocean–land sea level pressure gradient. In addition, the statistical link between upwelling and large-scale climate variability modes was analysed. The El Niño–Southern Oscillation and the Antarctic Oscillation exert some influence on austral summer upwelling velocities in South Benguela. The decadal evolution and the long-term trends of simulated upwelling and of ocean-minus-land air pressure gradient do not agree with Bakun's hypothesis that anthropogenic climate change should generally intensify coastal upwelling.


2014 ◽  
Vol 14 (4) ◽  
pp. 981-993 ◽  
Author(s):  
M.-S. Deroche ◽  
M. Choux ◽  
F. Codron ◽  
P. Yiou

Abstract. In this paper, we present a new approach for detecting potentially damaging European winter windstorms from a multi-variable perspective. European winter windstorms being usually associated with extra-tropical cyclones (ETCs), there is a coupling between the intensity of the surface wind speeds and other meso-scale and large-scale features characteristic of ETCs. Here we focus on the relative vorticity at 850 hPa and the sea level pressure anomaly, which are also used in ETC detection studies, along with the ratio of the 10 m wind speed to its 98th percentile. When analysing 10 events known by the insurance industry to have caused extreme damages, we find that they share an intense signature in each of the 3 fields. This shows that the relative vorticity and the mean sea level pressure have a predictive value of the intensity of the generated windstorms. The 10 major events are not the most intense in any of the 3 variables considered separately, but we show that the combination of the 3 variables is an efficient way of extracting these events from a reanalysis data set.


2006 ◽  
Vol 19 (22) ◽  
pp. 5816-5842 ◽  
Author(s):  
Rob Allan ◽  
Tara Ansell

Abstract An upgraded version of the Hadley Centre’s monthly historical mean sea level pressure (MSLP) dataset (HadSLP2) is presented. HadSLP2 covers the period from 1850 to date, and is based on numerous terrestrial and marine data compilations. Each terrestrial pressure series used in HadSLP2 underwent a series of quality control tests, and erroneous or suspect values were either corrected, where possible, or removed. Marine observations from the International Comprehensive Ocean Atmosphere Data Set were quality controlled (assessed against climatology and near neighbors) and then gridded. The final gridded form of HadSLP2 was created by blending together the processed terrestrial and gridded marine MSLP data. MSLP fields were made spatially complete using reduced-space optimal interpolation. Gridpoint error estimates were also produced. HadSLP2 was found to have generally stronger subtropical anticyclones and higher-latitude features across the Northern Hemisphere than an earlier product (HadSLP1). During the austral winter, however, it appears that the pressures in the southern Atlantic and Indian Ocean midlatitude regions are too high; this is seen in comparisons with both HadSLP1 and the 40-yr ECMWF Re-Analysis (ERA-40). Over regions of high altitude, HadSLP2 and ERA-40 showed consistent differences suggestive of potential biases in the reanalysis model, though the region over the Himalayas in HadSLP2 is biased compared with HadSLP1 and improvements are required in this region. Consistent differences were also observed in regions of sparse data, particularly over the higher latitudes of the Southern Ocean and in the southeastern Pacific. Unlike the earlier HadSLP1 product, error estimates are available with HadSLP2 to guide the user in these regions of low confidence. An evaluation of major phenomena in the climate system using HadSLP2 provided further validation of the dataset. Important climatic features/indices such as the North Atlantic Oscillation, Arctic Oscillation, North Pacific index, Southern Oscillation index, Trans-Polar index, Antarctic Oscillation, Antarctic Circumpolar Wave, East Asian Summer Monsoon index, and the Siberian High index have all been resolved in HadSLP2, with extensions back to the mid-nineteenth century.


2013 ◽  
Vol 13 (4) ◽  
pp. 1135-1142 ◽  
Author(s):  
R. Mel ◽  
A. Sterl ◽  
P. Lionello

Abstract. Climate change impact on storm surge regime is of great importance for the safety and maintenance of Venice. In this study a future storm surge scenario is evaluated using new high resolution sea level pressure and wind data recently produced by EC-Earth, an Earth System Model based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF). The study considers an ensemble of six 5 yr long simulations of the rcp45 scenario at 0.25° resolution and compares the 2094–2098 to the 2004–2008 period. EC-Earth sea level pressure and surface wind fields are used as input for a shallow water hydrodynamic model (HYPSE) which computes sea level and barotropic currents in the Adriatic Sea. Results show that a high resolution climate model is needed for producing realistic values of storm surge statistics and confirm previous studies in that they show little sensitivity of storm surge levels to climate change. However, some climate change signals are detected, such as increased persistence of high pressure conditions, an increased frequency of windless hour, and a decreased number of moderate windstorms.


Sign in / Sign up

Export Citation Format

Share Document