Using terrigenic 4 He to identify and quantify regional groundwater discharge to streams

2011 ◽  
Vol 47 (6) ◽  
Author(s):  
W. Payton Gardner ◽  
Glenn A. Harrington ◽  
D. Kip Solomon ◽  
Peter G. Cook
2015 ◽  
Vol 19 (4) ◽  
pp. 1599-1613 ◽  
Author(s):  
J. F. Costelloe ◽  
T. J. Peterson ◽  
K. Halbert ◽  
A. W. Western ◽  
J. J. McDonnell

Abstract. Groundwater discharge is a major contributor to stream baseflow. Quantifying this flux is difficult, despite its considerable importance to water resource management and evaluation of the effects of groundwater extraction on streamflow. It is important to be able to differentiate between contributions to streamflow from regional groundwater discharge (more susceptible to groundwater extraction) compared to interflow processes (arguably less susceptible to groundwater extraction). Here we explore the use of groundwater surface mapping as an independent data set to constrain estimates of groundwater discharge to streamflow using traditional digital filter and tracer techniques. We developed groundwater surfaces from 88 monitoring bores using Kriging with external drift and for a subset of 33 bores with shallow screen depths. Baseflow estimates at the catchment outlet were made using the Eckhardt digital filter approach and tracer data mixing analysis using major ion signatures. Our groundwater mapping approach yielded two measures (percentage area intersecting the land surface and monthly change in saturated volume) that indicated that digital filter-derived baseflow significantly exceeded probable groundwater discharge during most months. Tracer analysis was not able to resolve contributions from ungauged tributary flows (sourced from either shallow flow paths, i.e. interflow and perched aquifer discharge, or regional groundwater discharge) and regional groundwater. Groundwater mapping was able to identify ungauged sub-catchments where regional groundwater discharge was too deep to contribute to tributary flow and thus where shallow flow paths dominated the tributary flow. Our results suggest that kriged groundwater surfaces provide a useful, empirical and independent data set for investigating sources of fluxes contributing to baseflow and identifying periods where baseflow analysis may overestimate groundwater discharge to streamflow.


2021 ◽  
Author(s):  
Brian Babak Mojarrad ◽  
Anders Wörman ◽  
Joakim Riml ◽  
Shulan Xu

Abstract. The importance of hyporheic water fluxes induced by hydromorphologic processes at the streambed scale and their consequential effects on stream ecohydrology have recently received much attention. However, the role of hyporheic water fluxes in regional groundwater discharge is still not entirely understood. Streambed-induced flows not only affect mass and heat transport in streams but are also important for the retention of solute contamination originating from deep in the subsurface, such as naturally occurring solutes as well as leakage from the future geological disposal of nuclear waste. Here, we applied a multiscale modeling approach to investigate the effect of hyporheic fluxes on regional groundwater discharge in the Krycklan catchment, located in a boreal landscape in Sweden. Regional groundwater modeling was conducted using COMSOL Multiphysics constrained by observed or modeled representations of the catchment infiltration and geological properties, reflecting heterogeneities within the subsurface domain. Furthermore, streambed-scale modeling was performed using an exact spectral solution of the hydraulic head applicable to streaming water over a fluctuating streambed topography. By comparing the flow fields of watershed-scale groundwater discharge with and without consideration of streambed-induced hyporheic flows, we found that the flow trajectories and the distribution of the travel times of groundwater were substantially influenced by the presence of hyporheic fluxes near the streambed surface. One implication of hyporheic flows is that the groundwater flow paths contract near the streambed interface, thus fragmenting the coherent areas of groundwater upwelling and resulting in narrow “pinholes” of groundwater discharge points.


2014 ◽  
Vol 11 (11) ◽  
pp. 12405-12441 ◽  
Author(s):  
J. F. Costelloe ◽  
T. J. Peterson ◽  
K. Halbert ◽  
A. W. Western ◽  
J. J. McDonnell

Abstract. Groundwater discharge is a major contributor to stream baseflow. Quantifying this flux is difficult, despite its considerable importance to water resource management and evaluation of the effects of groundwater extraction on streamflow. It is important to be able to differentiate between contributions to streamflow from regional groundwater discharge (more susceptible to groundwater extraction) compared to interflow processes (arguably less susceptible to groundwater extraction). Here we explore the use of unconfined groundwater surface mapping as an independent dataset to constrain estimates of groundwater discharge to streamflow using traditional digital filter and tracer techniques. We developed groundwater surfaces from 98 monitoring bores using Kriging with external drift. Baseflow estimates at the catchment outlet were made using the Eckhardt digital filter approach and tracer data mixing analysis using major ion and stable isotope signatures. Our groundwater mapping approach yielded two measures (percentage area intersecting the land surface and monthly change in saturated volume) that indicated that digital filter-derived baseflow significantly exceeded probable groundwater discharge during the high flow period of spring to early summer. Tracer analysis was not able to resolve contributions from ungauged tributary flows (sourced from either shallow flow paths, i.e. interflow and perched aquifer discharge, or regional groundwater discharge) and regional groundwater. Groundwater mapping was able to identify ungauged sub-catchments where regional groundwater discharge was too deep to contribute to tributary flow and thus where shallow flow paths dominated the tributary flow. Our results suggest that kriged unconfined groundwater surfaces provide a useful, empirical and independent dataset for investigating sources of fluxes contributing to baseflow and identifying periods where baseflow analysis may overestimate groundwater discharge to streamflow.


Water ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 503 ◽  
Author(s):  
Lihong Yang ◽  
Yongqiang Qi ◽  
Chunmiao Zheng ◽  
Charles Andrews ◽  
Shenghua Yue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document