scholarly journals First three-dimensional observations of polar mesosphere winter echoes: Resolving space-time ambiguity

2011 ◽  
Vol 116 (A11) ◽  
pp. n/a-n/a ◽  
Author(s):  
M. Rapp ◽  
R. Latteck ◽  
G. Stober ◽  
P. Hoffmann ◽  
W. Singer ◽  
...  
Keyword(s):  
2021 ◽  
Vol 10 (3) ◽  
pp. 133
Author(s):  
Purwanto Purwanto ◽  
Sugeng Utaya ◽  
Budi Handoyo ◽  
Syamsul Bachri ◽  
Ike Sari Astuti ◽  
...  

In this research, we analyzed COVID-19 distribution patterns based on hotspots and space–time cubes (STC) in East Java, Indonesia. The data were collected based on the East Java COVID-19 Radar report results from a four-month period, namely March, April, May, and June 2020. Hour, day, and date information were used as the basis of the analysis. We used two spatial analysis models: the emerging hotspot analysis and STC. Both techniques allow us to identify the hotspot cluster temporally. Three-dimensional visualizations can be used to determine the direction of spread of COVID-19 hotspots. The results showed that the spread of COVID-19 throughout East Java was centered in Surabaya, then mostly spread towards suburban areas and other cities. An emerging hotspot analysis was carried out to identify the patterns of COVID-19 hotspots in each bin. Both cities featured oscillating patterns and sporadic hotspots that accumulated over four months. This pattern indicates that newly infected patients always follow the recovery of previous COVID-19 patients and that the increase in the number of positive patients is higher when compared to patients who recover. The monthly hotspot analysis results yielded detailed COVID-19 spatiotemporal information and facilitated more in-depth analysis of events and policies in each location/time bin. The COVID-19 hotspot pattern in East Java, visually speaking, has an amoeba-like pattern. Many positive cases tend to be close to the city, in places with high road density, near trade and business facilities, financial storage, transportation, entertainment, and food venues. Determining the spatial and temporal resolution for the STC model is crucial because it affects the level of detail for the information of endemic disease distribution and is important for the emerging hotspot analysis results. We believe that similar research is still rare in Indonesia, although it has been done elsewhere, in different contexts and focuses.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1251
Author(s):  
Wensheng Wang

We investigate spatial moduli of non-differentiability for the fourth-order linearized Kuramoto–Sivashinsky (L-KS) SPDEs and their gradient, driven by the space-time white noise in one-to-three dimensional spaces. We use the underlying explicit kernels and symmetry analysis, yielding spatial moduli of non-differentiability for L-KS SPDEs and their gradient. This work builds on the recent works on delicate analysis of regularities of general Gaussian processes and stochastic heat equation driven by space-time white noise. Moreover, it builds on and complements Allouba and Xiao’s earlier works on spatial uniform and local moduli of continuity of L-KS SPDEs and their gradient.


2013 ◽  
Vol 546 ◽  
pp. 93-95
Author(s):  
Fang Xie ◽  
You Jun Wang ◽  
Qiu Juan Lv ◽  
Hai Xia Du ◽  
Yan Jiao Li

The traditional engineering graphics model room could not be effective use by space, time and other factors of limitation. In view of the above questions, network engineering graphics model room was built with VRML software as a platform. This technology made use of PRO/E, Dreamweaver, Java software in order to transmission stability, the three dimensional visualization and strong interactivity and functional requirements. It has the important practical significance in remote education and teaching.


Author(s):  
Abdullah Guvendi

We investigate the dynamics of a composite system ([Formula: see text]) consisting of an interacting fermion–antifermion pair in the three-dimensional space–time background generated by a static point source. By considering the interaction between the particles as Dirac oscillator coupling, we analyze the effects of space–time topology on the energy of such a [Formula: see text]. To achieve this, we solve the corresponding form of a two-body Dirac equation (fully-covariant) by assuming the center-of-mass of the particles is at rest and locates at the origin of the spatial geometry. Under this assumption, we arrive at a nonperturbative energy spectrum for the system in question. This spectrum includes spin coupling and depends on the angular deficit parameter [Formula: see text] of the geometric background. This provides a suitable basis to determine the effects of the geometric background on the energy of the [Formula: see text] under consideration. Our results show that such a [Formula: see text] behaves like a single quantum oscillator. Then, we analyze the alterations in the energy levels and discuss the limits of the obtained results. We show that the effects of the geometric background on each energy level are not same and there can be degeneracy in the energy levels for small values of the [Formula: see text].


1974 ◽  
Vol 64 ◽  
pp. 99-99
Author(s):  
Peter G. Bergmann

Following Penrose's construction of space-time infinity by means of a conformal construction, in which null-infinity is a three-dimensional domain, whereas time- and space-infinities are points, Geroch has recently endowed space-infinity with a somewhat richer structure. An approach that might work with a large class of pseudo-Riemannian manifolds is to induce a topology on the set of all geodesics (whether complete or incomplete) by subjecting their Cauchy data to (small) displacements in space-time and Lorentz rotations, and to group the geodesics all of whose neighborhoods intersect into equivalence classes. The quotient space of geodesics over equivalence classes is to represent infinity. In the case of Minkowski, null-infinity has the usual structure, but I0, I+, and I- each become three-dimensional as well.


2014 ◽  
Vol 29 (22) ◽  
pp. 1450112 ◽  
Author(s):  
R. Bufalo

Inspired in discussions presented lately regarding Lorentz-violating interaction terms in B. Charneski, M. Gomes, R. V. Maluf and A. J. da Silva, Phys. Rev. D86, 045003 (2012); R. Casana, M. M. Ferreira Jr., R. V. Maluf and F. E. P. dos Santos, Phys. Lett. B726, 815 (2013); R. Casana, M. M. Ferreira Jr., E. Passos, F. E. P. dos Santos and E. O. Silva, Phys. Rev. D87, 047701 (2013), we propose here a slightly different version for the coupling term. We will consider a modified quantum electrodynamics with violation of Lorentz symmetry defined in a (2+1)-dimensional space–time. We define the Lagrangian density with a Lorentz-violating interaction, where the space–time dimensionality is explicitly taken into account in its definition. The work encompasses an analysis of this model at both zero and finite-temperature, where very interesting features are known to occur due to the space–time dimensionality. With that in mind, we expect that the space–time dimensionality may provide new insights about the radiative generation of higher-derivative terms into the action, implying in a new Lorentz-violating electrodynamics, as well the nonminimal coupling may provide interesting implications on the thermodynamical quantities.


Sign in / Sign up

Export Citation Format

Share Document