scholarly journals Correlation of surface sensible heat flux in the arid region of northwestern China with the northern boundary of the East Asian summer monsoon and Chinese summer precipitation

2011 ◽  
Vol 116 (D19) ◽  
Author(s):  
Hui Wang ◽  
Dongliang Li
2012 ◽  
Vol 69 (5) ◽  
pp. 1617-1632 ◽  
Author(s):  
Bruno Deremble ◽  
Guillaume Lapeyre ◽  
Michael Ghil

Abstract To understand the atmospheric response to a midlatitude oceanic front, this paper uses a quasigeostrophic (QG) model with moist processes. A well-known, three-level QG model on the sphere has been modified to include such processes in an aquaplanet setting. Its response is analyzed in terms of the upper-level atmospheric jet for sea surface temperature (SST) fronts of different profiles and located at different latitudes. When the SST front is sufficiently strong, it tends to anchor the mean atmospheric jet, suggesting that the jet’s spatial location and pattern are mainly affected by the latitude of the SST front. Changes in the jet’s pattern are studied, focusing on surface sensible heat flux and on moisture effects through latent heat release. It is found that latent heat release due to moist processes is modified when the SST front is changed, and this is responsible for the meridional displacement of the jet. Moreover, both latent heat release and surface sensible heat flux contribute to the jet’s strengthening. These results highlight the role of SST fronts and moist processes in affecting the characteristics of the midlatitude jet stream and of its associated storm track, particularly their positions.


2015 ◽  
Vol 11 (2) ◽  
pp. 265-281 ◽  
Author(s):  
Y. Kubota ◽  
R. Tada ◽  
K. Kimoto

Abstract. The δ18O of seawater (δ18Ow), an indirect indicator of sea surface salinity (SSS), in the northern East China Sea (ECS) is reconstructed for the Holocene using paired analyses of Mg / Ca ratio and δ18O of planktic foraminiferal tests. According to modern observation, interannual variations in SSS during summer in the northern ECS are mainly controlled by the Changjiang (Yangtze River) discharge, which reflects summer rainfall in its drainage basin. Thus, changes in the summer SSS in the northern ECS are interpreted as reflecting variations in the East Asian summer monsoon (EASM) precipitation in the Changjiang Basin. This interpretation is confirmed by a strong relationship between the SSS in the northern ECS and the Changjiang discharge during the wet season (May–October) based on instrumental salinity records from 1951 to 2000. However, it is difficult to estimate absolute salinity values in the past with high accuracy, because the past salinity–δ18Ow regression slope, end member salinity, and δ18Ow values are not well understood. Here, we conduct δ18Ow mass-balance calculation to estimate the freshwater contribution to the surface water of the northern ECS during the last 7 kyr by assuming a simple mixing between two end members – the seawater and the Changjiang freshwater. The result indicates that there has been no gradual decreasing secular trend in the Changjiang freshwater flux from the middle Holocene to the present day, suggesting that summer insolation in the Northern Hemisphere does not regulate the EASM precipitation in the Changjiang Basin. Instead, internal feedback appears to have been more important during the Holocene. The absence of a decreasing trend in regional summer precipitation over the Changjiang Basin since the middle Holocene is contradictory to Chinese speleothems' δ18O records, suggesting that it is not possible to explain orbital changes in Chinese speleothems' δ18O during the Holocene by changes in summer precipitation, but that such changes are related to other factors such as changes in the moisture source.


2020 ◽  
Author(s):  
Nils Slättberg ◽  
Deliang Chen

<p>The Planetary Boundary Layer Height (PBLH) is important for the exchange of energy, water, and momentum between the surface and the free atmosphere, making it a significant factor in studies of surface climate and atmospheric circulation. Over the Tibetan Plateau (TP) - a vast elevated heat source exerting significant influence on the Asian monsoon systems - the climate is changing rapidly. Among the many climate variables expected to change as global temperatures rise is the PBLH which, in addition to temperature profile, mechanical turbulence production, vertical velocity, and horizontal advection, is highly dependent on the surface sensible heat  fluxes. Our understanding of PBLH over the TP is very limited, although scattered estimates has indicated that it sometimes reach unusual heights – up to the vicinity of the tropopause. Long-term assessment of PBLH covering the whole TP is hampered by the fact that observations are scarce in time and space. This study takes advantage of a recently available high-resolution reanalysis (ERA5) for 1979-2018 to create a multi-decadal climatology of PBLH over the TP, and assess the seasonality, interannual variation and long-term trend of PBLH in relation to other climate variables such as tropopause height and surface sensible heat flux as well as large-scale atmospheric circulation. </p><p>The results show that the most prominent feature of the PBLH trend is a large region of decline in the central TP during the monsoon season. Notably, this is a region where the temperature increase is smaller than in the rest of the region, and the precipitation shows a statistically significant increasing trend. Increased cloudiness may therefore have decreased the surface heating and thus the sensible heat flux and PBLH. Assessing the spatially averaged trends for the first and second halves of the period separately reveals that the monsoon season PBLH does in fact increase during the first half of the period. In the dry season in contrast, the spatially averaged PBLH decreases by almost 30 meter per decade during the first half of the period and increases slightly in the second. Although none of the spatially averaged PBLH trends are statistically significant at the 95% level, it can be noted that the shift from decreasing to increasing PBLH for the dry season is in accordance with a recent study of spring sensible heat flux over the TP. The aforementioned study found that although the sensible heat flux has been declining because of wind speed decreases, it has recently started to recover in response to an increased difference between the ground surface temperature and the air temperature. Given that the PBLH is highly dependent on the surface sensible heat flux, this decline and recovery may very well have produced the PBLH trends for the dry season. In the monsoon season, with cloudy conditions and less solar radiation reaching the ground, other factors are likely of greater importance for the PBLH.</p>


Sign in / Sign up

Export Citation Format

Share Document