scholarly journals Changes in East Asian summer monsoon precipitation during the Holocene deduced from a freshwater flux reconstruction of the Changjiang (Yangtze River) based on the oxygen isotope mass balance in the northern East China Sea

2015 ◽  
Vol 11 (2) ◽  
pp. 265-281 ◽  
Author(s):  
Y. Kubota ◽  
R. Tada ◽  
K. Kimoto

Abstract. The δ18O of seawater (δ18Ow), an indirect indicator of sea surface salinity (SSS), in the northern East China Sea (ECS) is reconstructed for the Holocene using paired analyses of Mg / Ca ratio and δ18O of planktic foraminiferal tests. According to modern observation, interannual variations in SSS during summer in the northern ECS are mainly controlled by the Changjiang (Yangtze River) discharge, which reflects summer rainfall in its drainage basin. Thus, changes in the summer SSS in the northern ECS are interpreted as reflecting variations in the East Asian summer monsoon (EASM) precipitation in the Changjiang Basin. This interpretation is confirmed by a strong relationship between the SSS in the northern ECS and the Changjiang discharge during the wet season (May–October) based on instrumental salinity records from 1951 to 2000. However, it is difficult to estimate absolute salinity values in the past with high accuracy, because the past salinity–δ18Ow regression slope, end member salinity, and δ18Ow values are not well understood. Here, we conduct δ18Ow mass-balance calculation to estimate the freshwater contribution to the surface water of the northern ECS during the last 7 kyr by assuming a simple mixing between two end members – the seawater and the Changjiang freshwater. The result indicates that there has been no gradual decreasing secular trend in the Changjiang freshwater flux from the middle Holocene to the present day, suggesting that summer insolation in the Northern Hemisphere does not regulate the EASM precipitation in the Changjiang Basin. Instead, internal feedback appears to have been more important during the Holocene. The absence of a decreasing trend in regional summer precipitation over the Changjiang Basin since the middle Holocene is contradictory to Chinese speleothems' δ18O records, suggesting that it is not possible to explain orbital changes in Chinese speleothems' δ18O during the Holocene by changes in summer precipitation, but that such changes are related to other factors such as changes in the moisture source.

2013 ◽  
Vol 13 (5) ◽  
pp. 11997-12032 ◽  
Author(s):  
T. Wang ◽  
H. J. Wang ◽  
O. H. Otterå ◽  
Y. Q. Gao ◽  
L. L. Suo ◽  
...  

Abstract. Observation shows that eastern China has experienced an interdecadal shift in the summer precipitation during the second half of the 20th century. The summer precipitation increased in the middle and lower reaches of the Yangtze River Valley, whereas it decreased in northern China. Here we use a coupled ocean–atmosphere general circulation model and multi-ensemble simulations to show that the interdecadal shift is mainly caused by the combined effect of increasing global greenhouse gases and regional aerosol emissions over China. The rapidly increasing greenhouse gases induce tropical warming and a westward shift of the western Pacific subtropical high, leading to more precipitation in Yangtze River Valley. At the same time the aerosol cooling effect over land contributes to a reduced summer land–sea thermal contrast and therefore to a weakened East Asian summer monsoon and to drought in northern China. Consequently, an anomalous precipitation pattern starts to emerge in eastern China in late 1970s. Our results highlight the important role of anthropogenic forcing agents in shaping the weakened East Asian summer monsoon and associated anomalous precipitation in eastern China.


2018 ◽  
Vol 45 (15) ◽  
pp. 7711-7718 ◽  
Author(s):  
Richard Ching Wa Cheung ◽  
Moriaki Yasuhara ◽  
Briony Mamo ◽  
Kota Katsuki ◽  
Koji Seto ◽  
...  

2010 ◽  
Vol 23 (24) ◽  
pp. 6696-6705 ◽  
Author(s):  
Jianping Li ◽  
Zhiwei Wu ◽  
Zhihong Jiang ◽  
Jinhai He

Abstract The Indian summer monsoon (ISM) tends to be intensified in a global-warming scenario, with a weakened linkage with El Niño–Southern Oscillation (ENSO), but how the East Asian summer monsoon (EASM) responds is still an open question. This study investigates the responses of the EASM from observations, theoretical, and modeling perspectives. Observational and theoretical evidence demonstrates that, in contrast to the dramatic global-warming trend within the past 50 years, the regional-mean EASM rainfall is basically dominated by considerable interannual-to-decadal fluctuations, concurrent with enhanced precipitation over the middle and lower reaches of the Yangtze River and over southern Japan and suppressed rainfall amount over the South China and Philippine Seas. From 1958 through 2008, the EASM circulation exhibits a southward shift in its major components (the subtropical westerly jet stream, the western Pacific Ocean subtropical high, the subtropical mei-yu–baiu–changma front, and the tropical monsoon trough). Such a southward shift is very likely or in part due to the meridional asymmetric warming with the most prominent surface warming in the midhigh latitudes (45°–60°N), which induces a weakened meridional thermal contrast over eastern Asia. Another notable feature is the enhanced ENSO–EASM relationship within the past 50 years, which is opposite to the ISM. Fourteen state-of-the-art coupled models from the Intergovernmental Panel on Climate Change show that the EASM strength does not respond with any pronounced trend to the global-warming “A1B” forcing scenario (with an atmospheric CO2 concentration of 720 ppm) but shows interannual-to-decadal variations in the twenty-first century (2000–99). These results indicate that the primary response of the EASM to a warming climate may be a position change instead of an intensity change, and such position change may lead to spatial coexistence of floods and droughts over eastern Asia as has been observed in the past 50 years.


Sign in / Sign up

Export Citation Format

Share Document