Toward ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC

Author(s):  
Alexander Avramov ◽  
Andrew S. Ackerman ◽  
Ann M. Fridlind ◽  
Bastiaan van Diedenhoven ◽  
Giovanni Botta ◽  
...  
2011 ◽  
Vol 38 (21) ◽  
pp. n/a-n/a ◽  
Author(s):  
Xiao-Ming Hu ◽  
Fuqing Zhang ◽  
Guo Yu ◽  
Jose D. Fuentes ◽  
Longtao Wu

2013 ◽  
Author(s):  
M. Sikand ◽  
J. Koskulics ◽  
K. Stamnes ◽  
B. Hamre ◽  
J. J. Stamnes ◽  
...  

2011 ◽  
Vol 3 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Hugh Morrison ◽  
Paquita Zuidema ◽  
Andrew S Ackerman ◽  
Alexander Avramov ◽  
Gijs de Boer ◽  
...  

2021 ◽  
Vol 21 (23) ◽  
pp. 17969-17994
Author(s):  
Martin Radenz ◽  
Johannes Bühl ◽  
Patric Seifert ◽  
Holger Baars ◽  
Ronny Engelmann ◽  
...  

Abstract. Multi-year ground-based remote-sensing datasets were acquired with the Leipzig Aerosol and Cloud Remote Observations System (LACROS) at three sites. A highly polluted central European site (Leipzig, Germany), a polluted and strongly dust-influenced eastern Mediterranean site (Limassol, Cyprus), and a clean marine site in the southern midlatitudes (Punta Arenas, Chile) are used to contrast ice formation in shallow stratiform liquid clouds. These unique, long-term datasets in key regions of aerosol–cloud interaction provide a deeper insight into cloud microphysics. The influence of temperature, aerosol load, boundary layer coupling, and gravity wave motion on ice formation is investigated. With respect to previous studies of regional contrasts in the properties of mixed-phase clouds, our study contributes the following new aspects: (1) sampling aerosol optical parameters as a function of temperature, the average backscatter coefficient at supercooled conditions is within a factor of 3 at all three sites. (2) Ice formation was found to be more frequent for cloud layers with cloud top temperatures above -15∘C than indicated by prior lidar-only studies at all sites. A virtual lidar detection threshold of ice water content (IWC) needs to be considered in order to bring radar–lidar-based studies in agreement with lidar-only studies. (3) At similar temperatures, cloud layers which are coupled to the aerosol-laden boundary layer show more intense ice formation than decoupled clouds. (4) Liquid layers formed by gravity waves were found to bias the phase occurrence statistics below -15∘C. By applying a novel gravity wave detection approach using vertical velocity observations within the liquid-dominated cloud top, wave clouds can be classified and excluded from the statistics. After considering boundary layer and gravity wave influences, Punta Arenas shows lower fractions of ice-containing clouds by 0.1 to 0.4 absolute difference at temperatures between −24 and -8∘C. These differences are potentially caused by the contrast in the ice-nucleating particle (INP) reservoir between the different sites.


2005 ◽  
Vol 62 (9) ◽  
pp. 3082-3093 ◽  
Author(s):  
G. G. Carrió ◽  
H. Jiang ◽  
W. R. Cotton

Abstract The objective of this paper is to assess the impact of the entrainment of aerosol from above the inversion on the microphysical structure and radiative properties of boundary layer clouds. For that purpose, the Los Alamos National Laboratory sea ice model was implemented into the research and real-time versions of the Regional Atmospheric Modeling System at Colorado State University. A series of cloud-resolving simulations have been performed for a mixed-phase Arctic boundary layer cloud using a new microphysical module that considers the explicit nucleation of cloud droplets. Different aerosol profiles based on observations were used for initialization. When more polluted initial ice-forming nuclei (IFN) profiles are assumed, the liquid water fraction of the cloud decreases while the total condensate path, the residence time of the ice particles, and the downwelling infrared radiation monotonically increase. Results suggest that increasing the aerosol concentrations above the boundary layer may increase sea ice melting rates when mixed-phase clouds are present.


2021 ◽  
Author(s):  
Tomi Raatikainen ◽  
Marje Prank ◽  
Jaakko Ahola ◽  
Harri Kokkola ◽  
Juha Tonttila ◽  
...  

Abstract. Shallow marine mixed-phase clouds are important for the radiative balance, but modelling their formation and dynamics is challenging. These clouds depend on boundary layer turbulence and cloud top radiative cooling, which is related to the cloud phase. The fraction of frozen droplets depends on the availability of suitable ice nucleating particles (INPs), which initiate droplet freezing. While desert dust is the dominating INP type in most regions, remote boundary layer clouds are dependent on local marine INP emissions, which are often related to biogenic sources including phytoplankton. Here we use high resolution large eddy simulations to examine the potential effects of marine emissions on boundary layer INP concentrations and their effects on clouds. Surface emissions have a direct effect on INP concentration in a typical well-mixed boundary layer whereas a steep inversion can block the import of background INPs from the free troposphere. The importance of the marine source depends on the background INP concentration, so that marine emissions become dominant with low background concentrations. For the INP budget it is also important to account for INP recycling. Finally, with the high-resolution model we show how ice nucleation hotspots and high INPs concentrations are focused on updraught regions. Our results show that marine INP emissions contribute directly to the boundary layer INP budget and therefore have an influence on mixed-phase clouds.


2021 ◽  
Author(s):  
Martin Radenz ◽  
Johannes Bühl ◽  
Patric Seifert ◽  
Holger Baars ◽  
Ronny Engelmann ◽  
...  

Abstract. Multi-year ground-based remote-sensing datasets acquired with the Leipzig Aerosol and Cloud Remote Observations System (LACROS) at three sites: a highly polluted central European site (Leipzig, Germany), a polluted and strongly dust-influenced eastern Mediterranean site (Limassol, Cyprus), and a clean marine site in the southern mid-latitudes (Punta Arenas, Chile) are used to contrast ice formation in shallow stratiform liquid clouds. These unique, long-term datasets at key sites of aerosol-cloud interaction provide a deeper insight into cloud microphysics. The influence of temperature, aerosol load, boundary-layer coupling and gravity wave motion on ice formation is investigated. With respect to previous studies of regional contrasts in the properties of mixed-phase clouds our study contributes the following new aspects: (1) Sampling aerosol optical parameters as a function of temperature, the average backscatter coefficient at supercooled temperatures is within a factor of 3 at all three sites. (2) Ice formation was found to be more frequent for cloud layers with cloud top temperatures above −15 °C than indicated by prior lidar-only studies at all sites. A virtual lidar-detection threshold of IWC needs to be considered in order to bring radar-lidar-based studies in agreement with lidar-only studies. (3) At similar temperatures, cloud layers which are coupled to the aerosol-laden boundary layer show more intense ice formation than de-coupled clouds. (4) Liquid layers formed by gravity waves were found to bias the phase occurrence statistics below −15 °C. By applying a novel gravity wave detection approach using vertical velocity observations within the liquid-dominated cloud top, wave clouds can be classified and excluded from the statistics. After considering boundary layer and gravity-wave influences, Punta Arenas shows lower fractions of ice containing clouds by 0.1 to 0.4 absolute difference at temperatures between −24 and −8 °C. These differences are potentially caused by the contrast in the INP reservoir between the different sites.


Sign in / Sign up

Export Citation Format

Share Document