scholarly journals Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: Results from the first LUCID set of simulations

2012 ◽  
Vol 117 (D12) ◽  
pp. n/a-n/a ◽  
Author(s):  
J. P. Boisier ◽  
N. de Noblet-Ducoudré ◽  
A. J. Pitman ◽  
F. T. Cruz ◽  
C. Delire ◽  
...  
2021 ◽  
Vol 879 (1) ◽  
pp. 012010
Author(s):  
A S Liong ◽  
N Nasrullah ◽  
B Sulistyantara

Abstract Makassar City, the capital of South Sulawesi Province, is the largest metropolitan city in the eastern part of Indonesia, with a population development rate of 1.19% in 2019. An increase in population impacts city development and results in land use and land cover changes. Changes in land use and land cover pattern bring impact to Land Surface Temperature (LST). This study examines land cover’s influence on land surface temperature in Makassar City using multi-temporal satellite data. Land cover and LST data were extracted using Landsat 7 and Landsat 8 over the period of 1999, 2009, and 2019. The result shows that the highest increase in land cover changed was a built-up area of 13.1%, and vegetation decreased by 8.6%. The change in average LST value in the last 20 years was 0.39°C with the highest LST distribution areas was in 30-32°C and 32-34°C classes. The result of LST analysis in 2019 shows that the Urban Heat Island phenomenon has occurred in Makassar in the downtown area and several areas with the densely built-up area. With an overview of the UHI phenomenon in Makassar, the government is expected to raise public awareness of this phenomenon so that preventive actions can be taken, so the effects of UHI do not spread more widely.


2017 ◽  
Vol 14 (20) ◽  
pp. 4619-4635 ◽  
Author(s):  
Clifton R. Sabajo ◽  
Guerric le Maire ◽  
Tania June ◽  
Ana Meijide ◽  
Olivier Roupsard ◽  
...  

Abstract. Indonesia is currently one of the regions with the highest transformation rate of land surface worldwide related to the expansion of oil palm plantations and other cash crops replacing forests on large scales. Land cover changes, which modify land surface properties, have a direct effect on the land surface temperature (LST), a key driver for many ecological functions. Despite the large historic land transformation in Indonesia toward oil palm and other cash crops and governmental plans for future expansion, this is the first study so far to quantify the impacts of land transformation on the LST in Indonesia. We analyze LST from the thermal band of a Landsat image and produce a high-resolution surface temperature map (30 m) for the lowlands of the Jambi province in Sumatra (Indonesia), a region which suffered large land transformation towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, normalized differenced vegetation index (NDVI) and evapotranspiration (ET) between seven different land cover types (forest, urban areas, clear-cut land, young and mature oil palm plantations, acacia and rubber plantations) shows that forests have lower surface temperatures than the other land cover types, indicating a local warming effect after forest conversion. LST differences were up to 10.1 ± 2.6 °C (mean ± SD) between forest and clear-cut land. The differences in surface temperatures are explained by an evaporative cooling effect, which offsets the albedo warming effect. Our analysis of the LST trend of the past 16 years based on MODIS data shows that the average daytime surface temperature in the Jambi province increased by 1.05 °C, which followed the trend of observed land cover changes and exceeded the effects of climate warming. This study provides evidence that the expansion of oil palm plantations and other cash crops leads to changes in biophysical variables, warming the land surface and thus enhancing the increase of the air temperature because of climate change.


Sign in / Sign up

Export Citation Format

Share Document