scholarly journals Teleseismic P Wave Tomography Beneath the Pantanal, Paraná, and Chaco‐Paraná Basins, SE South America: Delimiting Lithospheric Blocks of the SW Gondwana Assemblage

2019 ◽  
Vol 124 (7) ◽  
pp. 7120-7137 ◽  
Author(s):  
M. P. Rocha ◽  
M. Assumpção ◽  
G. M. P. C. Affonso ◽  
P. A. Azevedo ◽  
M. Bianchi
2021 ◽  
Author(s):  
John Cornthwaite ◽  
Fenglin Niu ◽  
Alan Levander ◽  
Michael Schmitz ◽  
Germán Prieto ◽  
...  

<p>     The southernmost edge of the Caribbean (CAR) plate, a buoyant large igneous province, subducts shallowly beneath northwestern South America (NWSA) at a trench that lies northwest of Colombia. Recent finite frequency P-wave tomography results show a segmented CAR subducting at a shallow angle under the Santa Marta Massif to the Serrania de Perijá (SdP) before steepening while a detached segment beneath the Mérida Andes (MA) descends into the mantle transition zone. The dynamics of shallow subduction are poorly understood. Plate coupling between the flat subducting CAR and the overriding NWSA is proposed to have driven the uplift of the MA. In this study we analyze SKS shear wave splitting to investigate the seismic anisotropy beneath the slab segments to relate their geometry to mantle dynamics. We also use local S splitting to investigate the seismic anisotropy between the slab segments and the overriding plate. The data were recorded by a 65-element portable broadband seismograph network deployed in NWSA and 40 broadband stations of the Venezuelan and Colombian national seismograph networks.</p><p>     SKS fast polarization axes are measured generally trench-perpendicular (TP) west of the SdP but transition to trench-parallel (TL) at the SdP where the slab was imaged steepening into the mantle, consistent with previous studies. West of the MA the fast axis is again TP but transitions to TL under the MA. This second transition from TP to TL is likely due to mantle material being deflected around a detached slab under the MA. Local S fast polarization axes are dominantly TP throughout the study area west of the Santa Marta Massif and are consistent with slab-entrained flow. Under the Santa Marta Massif the fast axis is TL for reasons we do not yet understand.</p>


2021 ◽  
Author(s):  
Afsaneh Mohammadzaheri ◽  
Karin Sigloch ◽  
Kasra Hosseini
Keyword(s):  
P Wave ◽  

2021 ◽  
Author(s):  
Wenpei Miao ◽  
John Cornthwaite ◽  
Alan Levander ◽  
Fenglin Niu ◽  
Michael Schmitz ◽  
...  

<p>The Caribbean plate (CAR) collided with and initiated subduction beneath northwestern South America (SA) at about 60-55 Ma. Since the onset of subduction, it has formed the Lara nappes and subsequently the Laramide-style uplifts of the Merida Andes, Sierra de la Perija and Santa Marta ranges, with maximum elevations > 5km. The triangular Maracaibo block, bounded by the Santa Marta-Bucaramanga, Bocono and Oca-Ancon Faults, is currently escaping to the north relative to SA over both the subducting and nonsubducting elements of the CAR plate.</p><p>Although many petroleum related seismic studies have been done in this area, the details of the subduction geometry of the CAR plate beneath the Maracaibo block remain unclear. The few deeper seismic investigations are either very large scale, very local, or only peripheral to this area. Previous geodetic studies have suggested that this region has potential for a great (M~8+) earthquake (Bilham and Mencin, 2013). To investigate this complex region we fielded a 65 element broadband seismic array to complement the 48 existing stations of the Colombian and Venezuelan national seismic networks. The array is collectively referred to as the CARMArray.</p><p>In this study, we jointly inverted ambient noise Rayleigh wave Z/H ratios, phase velocities in the 8-30s band and ballistic Rayleigh wave phase velocities in 30-80s band to construct a 3D S-wave velocity model in the area from 75<sup>o</sup>-65<sup>o</sup> west and 5<sup>o</sup>-12<sup>o</sup> north. Rayleigh wave Z/H ratios are sensitive to the shallow sedimentary structure, while the phase velocity data have good resolution of the crust and upper mantle. The Vs model shows strong low-velocity anomalies beneath the Barinas-Apure and Maracaibo Basins, and the Paraguana Peninsula that are well correlated with surface geology. Sediment thickness beneath the Maracaibo basin reaches up to ~9 km depth, consistent with previous studies (Kellogg & Bonini, 1982). Crustal thickness beneath the Santa Marta uplift is 27-30 km, shallow for its nearly 4km elevation. From the trench to the southeast, Moho depth increases from 25-30 km near the coast to 40-45 km beneath the Maracaibo Basin, with the thickest crust, ~50 km, lying under the Merida Andes beneath the Bocono Fault. Crustal thickness decreases under the Venezeulan interior to ~45 km. From 50km to 150km depth, the CAR plate shows ~2% high Vs anomalies beneath the Santa Marta uplift and the Serrania de Perija range. Our slab image matches local slab seismicity very well (Cornthwaite et al., EGU 2021 GD7.1), and is consistent with and complements images from teleseismic P-wave tomography (Cornthwaite et al, 2021, submitted).</p>


2020 ◽  
Author(s):  
Afsaneh Mohammadzaheri ◽  
Karin Sigloch ◽  
Kasra Hosseini

Author(s):  
John Cornthwaite ◽  
Max Bezada ◽  
Wenpei Miao ◽  
Michael Schmitz ◽  
Germán Prieto ◽  
...  

Author(s):  
Afsaneh Mohammadzaheri ◽  
Karin Sigloch ◽  
Kasra Hosseini ◽  
Mitchell G. Mihalynuk
Keyword(s):  
P Wave ◽  

1994 ◽  
Vol 100 (1) ◽  
pp. 4-23 ◽  
Author(s):  
Yoshio Fukao ◽  
Sigenori Maruyama ◽  
Masayuki Obayashi ◽  
Hiroshi Inoue
Keyword(s):  
P Wave ◽  

2020 ◽  
Author(s):  
Genti Toyokuni ◽  
Takaya Matsuno ◽  
Dapeng Zhao
Keyword(s):  
P Wave ◽  

Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 425-439 ◽  
Author(s):  
Hanna Silvennoinen ◽  
Elena Kozlovskaya ◽  
Eduard Kissling

Abstract. The POLENET/LAPNET (Polar Earth Observing Network) broadband seismic network was deployed in northern Fennoscandia (Finland, Sweden, Norway, and Russia) during the third International Polar Year 2007–2009. The array consisted of roughly 60 seismic stations. In our study, we estimate the 3-D architecture of the upper mantle beneath the northern Fennoscandian Shield using high-resolution teleseismic P wave tomography. The P wave tomography method can complement previous studies in the area by efficiently mapping lateral velocity variations in the mantle. For this purpose 111 clearly recorded teleseismic events were selected and the data from the stations hand-picked and analysed. Our study reveals a highly heterogeneous lithospheric mantle beneath the northern Fennoscandian Shield though without any large high P wave velocity area that may indicate the presence of thick depleted lithospheric “keel”. The most significant feature seen in the velocity model is a large elongated negative velocity anomaly (up to −3.5 %) in depth range 100–150 km in the central part of our study area that can be followed down to a depth of 200 km in some local areas. This low-velocity area separates three high-velocity regions corresponding to the cratonic units forming the area.


Sign in / Sign up

Export Citation Format

Share Document