scholarly journals Geochemistry of Fluid Inclusions in Travertines From Western and Northern Turkey: Inferences on the Role of Active Faults in Fluids Circulation

2019 ◽  
Vol 20 (11) ◽  
pp. 5473-5498 ◽  
Author(s):  
Andrea Luca Rizzo ◽  
I. Tonguc Uysal ◽  
Halim Mutlu ◽  
Ezgi Ünal‐İmer ◽  
Kadir Dirik ◽  
...  
1993 ◽  
Vol 2 (2) ◽  
pp. 156-166 ◽  
Author(s):  
G. N. Jadhav ◽  
V. Panchapakesan ◽  
K. C. Sahu

1989 ◽  
Vol 53 (371) ◽  
pp. 315-325 ◽  
Author(s):  
J. Janeczek

AbstractNodules of manganoan fayalite occur in schlieren pegmatities in the vicinity of Strzegom, Lower Silesia. The fayalite, Na0.02(Fe1.812+Mn0.16Mg 0.03)Si0.99O4, is unzoned and non pleochroic. 2Va = 42° a 4.826(3), b 10.500(2), c 6.102(2) A, d130obs. = 2.83 Å, d130calc. = 2.833 Å, D = 4.35 g cm-3, Dcalc. = 4.353 g cm-3. The role of Na+ ions in the fayalite chemistry is discussed. The fayalite underwent multi-stage hydrothermal alteration beginning at the highest temperature (440°C) of homogenization of gaseous-fluid inclusions in quartz adjacent to the fayalite grains. Increase in fO2 and then in PH2O resulted in the formation of magnetite-quartz and Mn-grunerite-magnetite-quartz aggregates within the fayalite grains. The fayalite is mantled by a Mn-greenalite-magnetite rim, Mn-grunerite-magnetite-Mn-minnesotaite zone in a stilpnomelane or greenalite-rich groundmass. The minnesotaite is believed to have formed at the expense of grunerite. Stilpnomelane, the most abundant silicate phase in the rim, is the product of biotite and presumably greenalite alteration at the second stage of increasing Na activity (the crystallization of cleavelandite) in the pegmatites. The fayalite is also heavily altered to iddingsite—a composite mixture of amorphous FeOOH and silica. The iron-hydroxide recrystallized partially to poorly-crystalline goethite.


2018 ◽  
Vol 12 (2) ◽  
pp. 187-197 ◽  
Author(s):  
M. Amin Alizadeh-Khameneh ◽  
Mehdi Eshagh ◽  
Anna B. O. Jensen

Abstract An optimal design of a geodetic network can fulfill the requested precision and reliability of the network, and decrease the expenses of its execution by removing unnecessary observations. The role of an optimal design is highlighted in deformation monitoring network due to the repeatability of these networks. The core design problem is how to define precision and reliability criteria. This paper proposes a solution, where the precision criterion is defined based on the precision of deformation parameters, i. e. precision of strain and differential rotations. A strain analysis can be performed to obtain some information about the possible deformation of a deformable object. In this study, we split an area into a number of three-dimensional finite elements with the help of the Delaunay triangulation and performed the strain analysis on each element. According to the obtained precision of deformation parameters in each element, the precision criterion of displacement detection at each network point is then determined. The developed criterion is implemented to optimize the observations from the Global Positioning System (GPS) in Skåne monitoring network in Sweden. The network was established in 1989 and straddled the Tornquist zone, which is one of the most active faults in southern Sweden. The numerical results show that 17 out of all 21 possible GPS baseline observations are sufficient to detect minimum 3 mm displacement at each network point.


2007 ◽  
Vol SpecialIssue ◽  
pp. 35-38 ◽  
Author(s):  
F. H. Cornet

Earthquakes result from the sudden acceleration of a preliminary long-term slow deformation process. The objective of the Corinth Rift Laboratory (CRL) is to investigate <i>in situ</i> this quasistatic deformation process and mechanisms leading to a sudden catastrophic acceleration. Of particular interest is the characterization of the structure of the deforming zones and of the progressive localization of deformation. Special attention is given to the role of fluids but also on the influence of faults on regional fluid flow <br><br> doi:<a href="http://dx.doi.org/10.2204/iodp.sd.s01.20.2007" target="_blank">10.2204/iodp.sd.s01.20.2007</a>


10.1144/sp481 ◽  
2019 ◽  
Vol 481 (1) ◽  
pp. NP-NP ◽  

This volume comprises 17 contributions that address the architecture and geodynamic evolution of the Himalaya–Karakoram–Tibet (HKT) system, covering wide aspects, from the active seismicity of the present day to the remnants of the Proterozoic orogen. The articles investigate the HKT system at different scales, blending field research with laboratory studies. The role of various lithospheric components and their inheritance in the geodynamic and magmatic evolution of the HKT system through time, and their links to global geological events, are studied in the field. The laboratory research focuses on the (sub-)micrometre scale, detailing micro-structural geology, crystal chemistry, geochronology, and the study of circulating fluids, their preservation (trapped in fluid inclusions) and their evolution, distribution, migration and interaction with the solid host. An orogen over 2000 km long can be understood only if the processes at the nanometre and micrometre scales are taken into account. The contributions in this volume successfully combine these scales to enhance our understanding of the HKT system.


Sign in / Sign up

Export Citation Format

Share Document