silicate phase
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Hind Agourrame ◽  
Amine Belafhaili ◽  
Nisrine El Fami ◽  
Nacer Khachani ◽  
Mohamed Alami Talbi ◽  
...  

Layered Double Hydroxide (LDH) is ionic clay that is characterized by the union of metal cations and OH- hydroxides. LDH composites exhibit considerably high releasing and recharging capacity and have applications as bioactive cements. They can be prepared by direct co-precipitation of metal salts at controlled pH. The preparation is carried out from an acid solution of Zn (NO3)2.6H2O, Al (NO3)3.9H2O and a basic solution of Na2CO3 and NaOH, with a Zn/Al ratio = 3, the pH is stabilized between 9 and 9.5 at a constant temperature of 45°C. The objective of this study is to incorporate Zinc and Aluminum elements at different percentages in dicalcium silicate phase to produce C2S phase incorporating LDH composite. The characterizations of the developed phases by XRD and SEM indicate the formation of stoichiometric LDH phases Zn6Al2(OH)16CO3.4H2O and non-stoichiometric Zn0.61Al0.39 (OH)2(CO3)0.195.xH2O, the incorporation of Zn in the belitic C2S phase and not Al. The obtained micrographs by SEM(EDAX) analysis show new morphology of the stabilized composite.


2022 ◽  
Vol 314 ◽  
pp. 125377
Author(s):  
Congqi Luan ◽  
Yong Zhou ◽  
Yongyi Liu ◽  
Zunchao Ren ◽  
Jinbang Wang ◽  
...  

2021 ◽  
Author(s):  
R.A. Abdulvaliyev ◽  
◽  
A. Akcil ◽  
◽  
◽  
...  

As a result of separation of a fine fraction of gibbsite-kaolinite low-quality bauxite from the Krasnogorsky deposit, it is possible to increase its silicon module. When bauxite is chemically activated in a solution of sodium bicarbonate, the fine fraction is effectively separated from the large one and the phase composition changes – the calcium silicate phase disappears and the calcite phase is formed. With an increase in the activation temperature, the content of kaolinite and siderite decreases, the content of quartz and hematite increases. Studies have shown that at chemical activation temperatures of 120 oC, lasting more than 120 minutes and 200 oC, lasting more than 40 minutes, a dawsonite phase is formed in bauxite, which compacts the mineral structure. When determining the mode of chemical activation, it is necessary to take into account the negative possibility of the formation of dawsonite.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1267
Author(s):  
Xiao Wang ◽  
Ke Sun ◽  
Xin Li ◽  
Juntao Ma ◽  
Zhongtao Luo

As a solid waste generated in the alumina industry, red mud poses a significant environmental hazard and a storage problem. In this study, red mud was added to road cement clinker in order to utilize it. The sintering red mud was first de-alkalized, and then mixed with fly ash, clay, limestone, and sandstone, among other materials, to make Portland cement for road clinker. The effect of the addition of red mud on the thermal decomposition characteristics of Portland cement for roads was studied. The existent states of alkali and radioactive elements in Portland cement for road clinker were investigated by XRD and SEM analysis. The research results showed that the addition of red mud in Portland cement for road raw material significantly promoted the decomposition of carbonates in raw material. The major mineral phases of Portland cement for road clinker were C3S with a polyhedral morphology, quasi-sphericalC2S, and tubular C4AF. A small part of the alkali combined with the silicate phase to form a solid solution, and most of the alkali combined with S to form vermiform sulfate in the intermediate phase. The radionuclide 226Ra was mainly distributed in the silicate phase.232Th was mainly distributed in interstitial phases and then silicate phases, while 40Kwasmainly distributed in the interstitial phases.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1580
Author(s):  
Hao Na ◽  
Yajun Wang ◽  
Xi Zhang ◽  
Junguo Li ◽  
Yanan Zeng ◽  
...  

Dicalcium silicate is one of the main mineral phases of steel slag. Ascribed to the characteristics of hydration and carbonation, the application of slag in cement production and carbon dioxide sequestration has been confirmed as feasible. In the current study, the precipitation process of the dicalcium silicate phase in steel slag was discussed. Meanwhile, the study put emphasis on the influence of different crystal forms of dicalcium silicate on the hydration activity and carbonation characteristics of steel slag. It indicates that most of the dicalcium silicate phase in steel slag is the γ phase with the weakest hydration activity. The hydration activity of γ-C2S is improved to a certain extent by means of mechanical, high temperature, and chemical activation. However, the carbonation activity of γ-C2S is about two times higher than that of β-C2S. Direct and indirect carbonation can effectively capture carbon dioxide. This paper also summarizes the research status of the application of steel slag in cement production and carbon dioxide sequestration. Further development of the potential of dicalcium silicate hydration activity and simplifying the carbonation process are important focuses for the future.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 666
Author(s):  
Anatoly V. Nikiforov ◽  
Elena O. Dubinina ◽  
Nikolay A. Polyakov ◽  
Amina M. Sugorakova ◽  
Aylan K. Khertek

The study of the O and C isotope composition of calcite from nepheline syenites, ijolites and carbonatites of the Chik intrusion and the intrusions of the Erzin–Tarbagatay group of Sangilen (Eastern Siberia, Russia) showed derivation from alkaline melts enriched with a carbonate component from the host marbleized sedimentary rocks. The calculations showed that about 40% of the initial mass of carbonates involved in the interaction with silicate melts have remained after decarbonation. During the assimilation of the carbonate, an oxygen isotope exchange took place between the residual carbonate material and the silicate phase. Crystallization products of such hybrid magmas are carbonatite veins, calcite-rich nepheline rocks and their pegmatites with a calcite core.


2020 ◽  
Vol 19 (2) ◽  
pp. 175-182
Author(s):  
Renáta Marcinčáková ◽  
Alena Luptáková ◽  
Marek Vojtko ◽  
Martin Fujda ◽  
Jana Sedláková-Kaduková

The leaching of lithium from lepidolite using the filamentous fungus Aspergilluss niger was examined. Two mechanisms were suggested – biochemical using citric acid as the main bioleaching agent and biomechanical through hyphae penetration confirmed by XRD and SEM analyses. The bioleaching processes were conducted at various glucose concentrations (5 – 20 g.L-1). The higher glucose concentration was, the higher Li bioleaching was observed. Li accumulation by fungal biomass played an important role in Li solubilisation from lepidolite. Totally, 11.5 mg of lithium were recovered from 1 kg of lepidolite by combination of bioleaching and bioaccumulation processes. As a result of bioleaching, the formation of new silicate phase of SiO2 was detected. According to the results, fungal bioleaching of Li from lepidolite can be a perspective way of Li recovery from hard-rock ores.


2020 ◽  
Vol 8 ◽  
Author(s):  
Helena V. Pryer ◽  
Jade E. Hatton ◽  
Jemma L. Wadham ◽  
Jon R. Hawkings ◽  
Laura F. Robinson ◽  
...  

Proglacial rivers have been shown to have distinctive silicon (Si) isotope compositions, providing new insights into the mechanisms controlling Si cycling in the subglacial environment and suggesting terrestrial Si isotope exports may have varied between glacial and interglacial periods. However, Si isotope data are currently limited to a small number of glacial systems in the northern hemisphere, and it is unclear how compositions might vary across a spectrum of glacial influence. Using Chilean Patagonia as a unique natural laboratory, we present Si isotope compositions of 0.45 μm filtered (fSi), 0.02 μm filtered (DSi), and reactive amorphous (ASi) fractions from 40 river catchments with variable glacial cover and explore the key controls on Si cycling. The 0.45 μm filtered glacier-fed river samples displayed isotopically light compositions and a positive linear correlation with upstream glacial cover. This relationship was controlled by the inclusion of an isotopically light colloidal-nanoparticulate (0.02–0.45 μm) silicate phase that was only present in glacier-fed rivers and dominated Si budgets in these catchments. This phase was predominately composed of feldspars and its lability in seawater is uncertain, representing a significant unknown in resolving glacial Si isotope exports from this region. When the colloidal-nanoparticulates were removed from solution by ultra-filtration, the resultant DSi isotope compositions of glacier-fed catchments were not isotopically distinct from some non-glacial rivers and exhibited no clear relationship with glacial cover. The colloidal-nanoparticulate concentration of other weathering-sensitive elements (Li, Mg, Ba, Sr) also showed a linear relationship with glacial cover, suggesting that their isotopic compositions could be affected in a similar manner. These findings highlight the benefit of size-fractionated sampling and the need for more research to understand the lability of colloidal-nanoparticulate species, especially in glacier-fed rivers. Finally, we explore the controls on river ASi isotope compositions and show how including these reactive particulate phases is critical to quantifying terrestrial Si isotope budgets, both in Patagonia and other global regions.


Sign in / Sign up

Export Citation Format

Share Document