Using Prophet Forecasting Model to Characterize the Temporal Variations of Historical and Future Surface Urban Heat Island in China

2020 ◽  
Vol 125 (23) ◽  
Author(s):  
Long Li ◽  
Yong Zha ◽  
Jiahua Zhang ◽  
Yunmei Li ◽  
Heng Lyu
2021 ◽  
Vol 13 (21) ◽  
pp. 4469
Author(s):  
Faezeh Najafzadeh ◽  
Ali Mohammadzadeh ◽  
Arsalan Ghorbanian ◽  
Sadegh Jamali

Mapping and monitoring the spatio-temporal variations of the Surface Urban Heat Island (SUHI) and thermal comfort of metropolitan areas are vital to obtaining the necessary information about the environmental conditions and promoting sustainable cities. As the most populated city of Iran, Tehran has experienced considerable population growth and Land Cover/Land Use (LULC) changes in the last decades, which resulted in several adverse environmental issues. In this study, 68 Landsat-5 and Landsat-8 images, collected from the Google Earth Engine (GEE), were employed to map and monitor the spatio-temporal variations of LULC, SUHI, and thermal comfort of Tehran between 1989 and 2019. In this regard, planar fitting and Gaussian Surface Model (GSM) approaches were employed to map SUHIs and derive the relevant statistical values. Likewise, the thermal comfort of the city was investigated by the Urban Thermal Field Variance Index (UTFVI). The results indicated that the SUHI intensities have generally increased throughout the city by an average value of about 2.02 °C in the past three decades. The most common reasons for this unfavorable increase were the loss of vegetation cover (i.e., 34.72%) and massive urban expansions (i.e., 53.33%). Additionally, the intra-annual investigations in 2019 revealed that summer and winter, with respectively 8.28 °C and 4.37 °C, had the highest and lowest SUHI magnitudes. Furthermore, the decadal UTFVI maps revealed notable thermal comfort degradation of Tehran, by which in 2019, approximately 52.35% of the city was identified as the region with the worst environmental condition, of which 59.94% was related to human residents. Additionally, the relationships between various air pollutants and SUHI intensities were appraised, suggesting positive relationships (i.e., ranging between 0.23 and 0.43) that can be used for establishing possible two-way mitigations strategies. This study provided analyses of spatio-temporal monitoring of SUHI and UTFVI throughout Tehran that urban managers and policymakers can consider for adaption and sustainable development.


2021 ◽  
pp. 117802
Author(s):  
Ahmed M. El Kenawy ◽  
Juan I. Lopez-Moreno ◽  
Matthew F. McCabe ◽  
Fernando Domínguez-Castro ◽  
Dhais Peña-Angulo ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Angel Hsu ◽  
Glenn Sheriff ◽  
Tirthankar Chakraborty ◽  
Diego Manya

AbstractUrban heat stress poses a major risk to public health. Case studies of individual cities suggest that heat exposure, like other environmental stressors, may be unequally distributed across income groups. There is little evidence, however, as to whether such disparities are pervasive. We combine surface urban heat island (SUHI) data, a proxy for isolating the urban contribution to additional heat exposure in built environments, with census tract-level demographic data to answer these questions for summer days, when heat exposure is likely to be at a maximum. We find that the average person of color lives in a census tract with higher SUHI intensity than non-Hispanic whites in all but 6 of the 175 largest urbanized areas in the continental United States. A similar pattern emerges for people living in households below the poverty line relative to those at more than two times the poverty line.


Sign in / Sign up

Export Citation Format

Share Document