Remote Sensing of Magnetic Reconnection in the Magnetotail using In Situ Multipoint Observations at the Plasma Sheet Boundary Layer

Author(s):  
S. Wellenzohn ◽  
R. Nakamura ◽  
T.K.M. Nakamura ◽  
A. Varsani ◽  
V. A. Sergeev ◽  
...  
2014 ◽  
Vol 1 (2) ◽  
pp. 1657-1671
Author(s):  
J. Guo ◽  
B. Yu

Abstract. We studied the evolutions of double layers which appear after the magnetic reconnection through two-dimensional electromagnetic particle-in-cell simulation. The simulation results show that the double layers are formed in the plasma sheet boundary layer after magnetic reconnection. At first, the double layers which have unipolar structures are formed. And then the double layers turn into bipolar structures, which will couple with another new weak bipolar structure. Thus a new double layer or tripolar structure comes into being. The double layers found in our work are about several ten Debye lengths, which accords with the observation results. It is suggested that the electron beam formed during the magnetic reconnection is responsible for the production of the double layers.


2007 ◽  
Vol 24 (4) ◽  
pp. 1122-1124
Author(s):  
Yuan Zhi-Gang ◽  
Deng Xiao-Hua ◽  
Pang Ye ◽  
Li Shi-You ◽  
Wang Jing-Fang

2020 ◽  
Vol 125 (8) ◽  
Author(s):  
X.‐J. Zhang ◽  
Q. Ma ◽  
A. V. Artemyev ◽  
W. Li ◽  
W. S. Kurth ◽  
...  

2018 ◽  
Vol 40 ◽  
pp. 63 ◽  
Author(s):  
Rayonil Gomes Carneiro ◽  
Alice Henkes ◽  
Gilberto Fisch ◽  
Camilla Kassar Borges

In the present study, the evolution the diurnal cycle of planetary boundary layer in the wet season at Amazon region during a period of intense observations carried out in the GOAmazon Project 2014/2015 (Green Ocean Amazon).The analysis includes radiosonde and remote sensing data. In general case, the results of the daily cycle in the wet season indicate a Nocturnal boundary layer with a small oscillation in its depth and with a tardy erosion. The convective boundary layer did not present great depth, responding to the low values of sensible heat of the wet season. A comparison between the different techniques(in situ observations and remote sensing)  for estimating the planetary boundary layer is also presented.


1996 ◽  
Vol 14 (6) ◽  
pp. 593-607
Author(s):  
M. Wüest ◽  
D. T. Young ◽  
M. F. Thomsen ◽  
B. L. Barraclough ◽  
H. J. Singer ◽  
...  

Abstract. We present initial results from the Low-energy magnetospheric ion composition sensor (LOMICS) on the Combined release and radiation effects satellite (CRRES) together with electron, magnetic field, and electric field wave data. LOMICS measures all important magnetospheric ion species (H+, He++, He+, O++, O+) simultaneously in the energy range 60 eV to 45 keV, as well as their pitch-angle distributions, within the time resolution afforded by the spacecraft spin period of 30 s. During the geomagnetic storm of 9 July 1991, over a period of 42 min (0734 UT to 0816 UT) the LOMICS ion mass spectrometer observed an apparent O+ conic flowing away from the southern hemisphere with a bulk velocity that decreased exponentially with time from 300 km/s to 50 km/s, while its temperature also decreased exponentially from 700 to 5 eV. At the onset of the O+ conic, intense low-frequency electromagnetic wave activity and strong pitch-angle scattering were also observed. At the time of the observations the CRRES spacecraft was inbound at L~7.5 near dusk, magnetic local time (MLT), and at a magnetic latitude of –23°. Our analysis using several CRRES instruments suggests that the spacecraft was skimming along the plasma sheet boundary layer (PSBL) when the upward-flowing ion conic arrived. The conic appears to have evolved in time, both slowing and cooling, due to wave-particle interactions. We are unable to conclude whether the conic was causally associated with spatial structures of the PSBL or the central plasma sheet.


Author(s):  
W. J. Burke ◽  
J. S. Machuzak ◽  
N. C. Maynard ◽  
E. M. Basinska ◽  
G. M. Erickson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document