spacecraft spin
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2014 ◽  
Vol 3 (1) ◽  
pp. 59-70 ◽  
Author(s):  
N. Doss ◽  
A. N. Fazakerley ◽  
B. Mihaljčić ◽  
A. D. Lahiff ◽  
R. J. Wilson ◽  
...  

Abstract. The Plasma Electron and Current Experiment (PEACE) instruments operate on all four of the Cluster spacecraft and measure the 3-D velocity distribution of electrons in the energy range from 0.59 eV to 26.4 keV during each spacecraft spin. Pitch angle distributions and moments of the velocity distribution are also produced. As the mission has progressed, the efficiency of the detectors has declined. Several factors may play a role in this decline such as exposure to radiation, high electron fluxes and spacecraft thruster firings. To account for these variations, continuous in-flight calibration work is essential. The purpose of this paper is to describe the PEACE calibration parameters, focussing in particular on those that vary over time, and to describe the methods which are used to determine their evolution.


Author(s):  
N. Doss ◽  
A. N. Fazakerley ◽  
B. Mihaljčić ◽  
A. D. Lahiff ◽  
R. J. Wilson ◽  
...  

Abstract. The Plasma Electron and Current Experiment (PEACE) instruments operate on all four of the Cluster spacecraft and measure the 3-D velocity distribution of electrons in the energy range from 0.59 eV to 26.4 keV during each spacecraft spin. Pitch angle distributions and moments of the velocity distribution are also produced. As the mission progresses the efficiency of the detectors has declined. Several factors may play a role in this decline such as exposure to radiation, high electron fluxes and spacecraft thruster firings. To account for these variations, continuous in-flight calibration work is essential. The purpose of this paper is to describe the PEACE calibration parameters, focussing in particular on those that vary over time, and to describe the methods which are used to determine their evolution.


2011 ◽  
Vol 29 (5) ◽  
pp. 875-882 ◽  
Author(s):  
E. Georgescu ◽  
F. Plaschke ◽  
U. Auster ◽  
K.-H. Fornaçon ◽  
H. U. Frey

Abstract. The majority of scientific satellites investigating the Earth magnetosphere are spin stabilized. The attitude information comes usually from a sun sensor and is missing in the umbra; hence, the accurate experimental determination of vector quantities is not possible during eclipses. The spin period of the spacecraft is generally not constant during these times because the moment of inertia changes due to heat dissipation. The temperature dependence of the moment of inertia for each spacecraft has a specific signature determined by its design and distribution of mass. We developed an "eclipse-spin" model for the spacecraft spin period behaviour using magnetic field vector measurements close to the Earth, where the magnetic field is dominated by the dipole field, and in the magnetospheric lobes, where the magnetic field direction is mostly constant. The modelled spin periods give us extraordinarily good results with accumulated phase deviations over one hour of less than 10 degrees. Using the eclipse spin model satellite experiments depending on correct spin phase information can deliver science data even during eclipses. Two applications for THEMIS B, one in the lobe and the other in the lunar wake, are presented.


2010 ◽  
Vol 28 (11) ◽  
pp. 2113-2125 ◽  
Author(s):  
W.-L. Teh ◽  
B. U. Ö. Sonnerup ◽  
J. Birn ◽  
R. E. Denton

Abstract. We present a reconstruction technique to solve the steady resistive MHD equations in two dimensions with initial inputs of field and plasma data from a single spacecraft as it passes through a coherent structure in space. At least two components of directly measured electric fields (the spacecraft spin-plane components) are required for the reconstruction, to produce two-dimensional (2-D) field and plasma maps of the cross section of the structure. For convenience, the resistivity tensor η is assumed diagonal in the reconstruction coordinates, which allows its values to be estimated from Ohm's law, E+v×B=η·j. In the present paper, all three components of the electric field are used. We benchmark our numerical code by use of an exact, axi-symmetric solution of the resistive MHD equations and then apply it to synthetic data from a 3-D, resistive, MHD numerical simulation of reconnection in the geomagnetic tail, in a phase of the event where time dependence and deviations from 2-D are both weak. The resistivity used in the simulation is time-independent and localized around the reconnection site in an ellipsoidal region. For the magnetic field, plasma density, and pressure, we find very good agreement between the reconstruction results and the simulation, but the electric field and plasma velocity are not predicted with the same high accuracy.


1999 ◽  
Vol 22 (6) ◽  
pp. 768-775 ◽  
Author(s):  
Richard A. Fowell ◽  
Richard I. Milford ◽  
John F. Yocum

1996 ◽  
Vol 14 (6) ◽  
pp. 593-607
Author(s):  
M. Wüest ◽  
D. T. Young ◽  
M. F. Thomsen ◽  
B. L. Barraclough ◽  
H. J. Singer ◽  
...  

Abstract. We present initial results from the Low-energy magnetospheric ion composition sensor (LOMICS) on the Combined release and radiation effects satellite (CRRES) together with electron, magnetic field, and electric field wave data. LOMICS measures all important magnetospheric ion species (H+, He++, He+, O++, O+) simultaneously in the energy range 60 eV to 45 keV, as well as their pitch-angle distributions, within the time resolution afforded by the spacecraft spin period of 30 s. During the geomagnetic storm of 9 July 1991, over a period of 42 min (0734 UT to 0816 UT) the LOMICS ion mass spectrometer observed an apparent O+ conic flowing away from the southern hemisphere with a bulk velocity that decreased exponentially with time from 300 km/s to 50 km/s, while its temperature also decreased exponentially from 700 to 5 eV. At the onset of the O+ conic, intense low-frequency electromagnetic wave activity and strong pitch-angle scattering were also observed. At the time of the observations the CRRES spacecraft was inbound at L~7.5 near dusk, magnetic local time (MLT), and at a magnetic latitude of –23°. Our analysis using several CRRES instruments suggests that the spacecraft was skimming along the plasma sheet boundary layer (PSBL) when the upward-flowing ion conic arrived. The conic appears to have evolved in time, both slowing and cooling, due to wave-particle interactions. We are unable to conclude whether the conic was causally associated with spatial structures of the PSBL or the central plasma sheet.


1994 ◽  
Vol 116 (3) ◽  
pp. 521-528
Author(s):  
F. O. Eke ◽  
G. A. Macala ◽  
G. K. Man

This paper presents a study of the effects of structural flexibility on one of the control loops that constitute the Attitude and Articulation Control Subsystem of the Galileo Spacecraft. Both stability analysis and time domain simulation studies are discussed. Results obtained indicate that the control loop of interest—the Clock Controller—will interact stably with the spacecraft structure as long as the spacecraft scan platform boresight points at least 30 deg away from the spacecraft spin axis (poles). Flexibility effects become more and more pronounced with proximity of the bore-sight to the poles as several structural modes become excitable to resonance.


Sign in / Sign up

Export Citation Format

Share Document