scholarly journals Seasonal and Interannual Variations of CO 2 Fluxes Over 10 Years in an Alpine Wetland on the Qinghai‐Tibetan Plateau

2020 ◽  
Vol 125 (11) ◽  
Author(s):  
Jingbin Zhu ◽  
Fawei Zhang ◽  
Hongqin Li ◽  
Huidan He ◽  
Yingnian Li ◽  
...  
2006 ◽  
Vol 33 (19) ◽  
Author(s):  
Seiji Kato ◽  
Norman G. Loeb ◽  
Patrick Minnis ◽  
Jennifer A. Francis ◽  
Thomas P. Charlock ◽  
...  

2018 ◽  
Vol 4 (2) ◽  
pp. 63-68 ◽  
Author(s):  
А. Попов ◽  
A. Popov ◽  
Николай Гаврилов ◽  
Nikolay Gavrilov ◽  
А. Андреев ◽  
...  

The method of digital difference filters is applied to the data analysis of SATI observations of hydroxyl nightglow intensity and rotational temperature at altitudes 85–90 km over Almaty (43°03' N, 76°58' E), Kazakhstan, in 2010–2017. We examine seasonal and interannual variations in monthly average values and standard deviations of variations with periods 0.4–5.4 hrs, which may be associated with internal gravity waves in the mesopause region. The monthly average temperature near the mesopause has a maximum in winter and a minimum in June. The monthly average intensity has an additional maximum in June. Standard deviation of mesoscale rotational temperature variations and characteristics of internal gravity waves are maximum in spring and autumn. The spring maximum of mesoscale OH emission intensity variations is shifted to June. Interannual variations and multi-year trends of OH rotational temperature and emission intensity may differ in detail. This may be connected with seasonal and long-term variations in the complex system of the photochemical processes, which produce the OH nightglow.


2010 ◽  
Vol 7 (4) ◽  
pp. 1207-1221 ◽  
Author(s):  
L. Zhao ◽  
J. Li ◽  
S. Xu ◽  
H. Zhou ◽  
Y. Li ◽  
...  

Abstract. Alpine wetland meadow could functions as a carbon sink due to it high soil organic content and low decomposition. However, the magnitude and dynamics of carbon stock in alpine wetland ecosystems are not well quantified. Therefore, understanding how environmental variables affect the processes that regulate carbon fluxes in alpine wetland meadow on the Qinghai-Tibetan Plateau is critical. To address this issue, Gross Primary Production (GPP), Ecosystem Respiration (Reco), and Net Ecosystem Exchange (NEE) were examined in an alpine wetland meadow using the eddy covariance method from October 2003 to December 2006 at the Haibei Research Station of the Chinese Academy of Sciences. Seasonal patterns of GPP and Reco were closely associated with leaf area index (LAI). The Reco showed a positive exponential to soil temperature and relatively low Reco occurred during the non-growing season after a rain event. This result is inconsistent with the result observed in alpine shrubland meadow. In total, annual GPP were estimated at 575.7, 682.9, and 630.97 g C m−2 in 2004, 2005, and 2006, respectively. Meanwhile, the Reco were equal to 676.8, 726.4, 808.2 g C m−2, and thus the NEE were 101.1, 44.0 and 173.2 g C m−2. These results indicated that the alpine wetland meadow was a moderately source of carbon dioxide (CO2). The observed carbon dioxide fluxes in the alpine wetland meadow were higher than other alpine meadow such as Kobresia humilis meadow and shrubland meadow.


Limnology ◽  
2018 ◽  
Vol 19 (3) ◽  
pp. 285-297 ◽  
Author(s):  
Bin Li ◽  
Fajun Chen ◽  
Dandan Xu ◽  
Zhijian Wang ◽  
Min Tao

Sign in / Sign up

Export Citation Format

Share Document