scholarly journals Distributions of Ion Density Irregularities and Their Gradients Inside Low‐Latitude Ionospheric Plasma Bubbles Based on C/NOFS Planar Langmuir Probe Data

Space Weather ◽  
2021 ◽  
Vol 19 (3) ◽  
Author(s):  
Emanoel Costa ◽  
Patrick A. Roddy ◽  
John O. Ballenthin
2015 ◽  
Vol 120 (3) ◽  
pp. 2288-2298 ◽  
Author(s):  
G. J. Wang ◽  
J. K. Shi ◽  
B. W. Reinisch ◽  
X. Wang ◽  
Z. Wang

2014 ◽  
Vol 32 (7) ◽  
pp. 773-791 ◽  
Author(s):  
E. Costa ◽  
P. A. Roddy ◽  
J. O. Ballenthin

Abstract. The planar Langmuir probe (PLP) onboard the Communication/Navigation Outage Forecasting System (C/NOFS) satellite has been monitoring ionospheric plasma densities and their irregularities with high resolution almost seamlessly since May 2008. Considering the recent changes in status of the C/NOFS mission, it may be interesting to summarize some statistical results from these measurements. PLP data from 2 different years (1 October 2008–30 September 2009 and 1 January 2012–31 December 2012) were selected for analysis. The first data set corresponds to solar minimum conditions and the second one is as close to solar maximum conditions of solar cycle 24 as possible at the time of the analysis. The results from the analysis show how the values of the standard deviation of the ion density which are greater than specified thresholds are statistically distributed as functions of several combinations of the following geophysical parameters: (i) solar activity, (ii) altitude range, (iii) longitude sector, (iv) local time interval, (v) geomagnetic latitude interval, and (vi) season.


2020 ◽  
Vol 4 (1) ◽  
pp. 42-46
Author(s):  
Thomas, J. E. ◽  
George, N. J. ◽  
Ekanem, A.M ◽  
Akpan, A. E.

Plasma Analyzer (IAP) and Langmuir Probe (ISL) experiments of the DEMETER microsatellite were used to check the state of the ionosphere in the region of the M8.1 East of Kuril Islands earthquake of 13th January, 2007,30 days afore and 10 days after the event using statistical approach. The study strongly revealed that all three investigated ionospheric parameters of electron density, total ion density and electron temperature displayed unfamiliar ionospheric variations eight days before the earthquake in the daytime time half orbit measurement. To this, the electron density, total ion density and electron temperature recorded a variation of 4.09, 5.73 and -2.03 respectively. These irregularities were vetted for untrue signals using the geomagnetic indices of Kp and Dst. It was however realized that the state of the ionosphere was geomagnetically quiet during this day, hence the observed variations were seismogenic.


2013 ◽  
Vol 31 (11) ◽  
pp. 2077-2084 ◽  
Author(s):  
D. P. Nade ◽  
A. K. Sharma ◽  
S. S. Nikte ◽  
P. T. Patil ◽  
R. N. Ghodpage ◽  
...  

Abstract. This paper presents the observations of zonal drift velocities of equatorial ionospheric plasma bubbles and their comparison with model values. These velocities are determined by nightglow OI 630.0 nm images. The nightglow observations have been carried out from the low latitude station Kolhapur (16.8° N, 74.2° E; 10.6° N dip lat.) during clear moonless nights. Herein we have presented the drift velocities of equatorial plasma bubbles for the period of February–April 2011. Out of 80 nights, 39 showed the occurrence of equatorial plasma bubbles (49%). These 39 nights correspond to magnetically quiet days (ΣKp < 26). The average eastward zonal velocities (112 ± 10 m s−1) of equatorial plasma bubbles increased from evening sector to 21:00 IST (Indian Standard Time = Universal Time + 05:30:00 h), reach maximum about 165 ± 30 m s−1 and then decreases with time. The calculated velocities are in good agreement with that of recently reported values obtained with models with occasional differences; possible mechanisms of which are discussed.


2016 ◽  
Vol 34 (12) ◽  
pp. 1243-1253 ◽  
Author(s):  
Mark B. Moldwin ◽  
Shasha Zou ◽  
Tom Heine

Abstract. The name “plume” has been given to a variety of plasma structures in the Earth's magnetosphere and ionosphere. Some plumes (such as the plasmasphere plume) represent elevated plasma density, while other plumes (such as the equatorial F region plume) represent low-density regions. Despite these differences these structures are either directly related or connected in the causal chain of plasma redistribution throughout the system. This short review defines how plumes appear in different measurements in different regions and describes how plumes can be used to understand magnetosphere–ionosphere coupling. The story of the plume family helps describe the emerging conceptual framework of the flow of high-density–low-latitude ionospheric plasma into the magnetosphere and clearly shows that strong two-way coupling between ionospheric and magnetospheric dynamics occurs not only in the high-latitude auroral zone and polar cap but also through the plasmasphere. The paper briefly reviews, highlights and synthesizes previous studies that have contributed to this new understanding.


Author(s):  
H. Castilho ◽  
Vivian Moreira ◽  
José Humberto Andrade; Abdu ◽  
Mangalathayil Ali; Arruda ◽  
Daniela Cristina

2021 ◽  
Author(s):  
Jiyao Xu ◽  
Wei Yuan ◽  
Kun Wu ◽  
Longchang Sun

&lt;p&gt;China, from north to south, spans from the middle latitudes to the low latitude both in geographic latitude and geomagnetic latitude. And China has a variety of topography environment, which including high lands, plains, seas, and long coasts. To better understand topographic and latitudinal effects on the mesosphere and thermosphere and features of ionospheric plasma irregularities at various latitudes in China, we have established a ground-based airglow network in China gradually since 2010, which consists of 16 stations. This network almost cover China, which focuses on two airglow layers: the OI (~250 km) and OH (~87 km) airglow layers. The observations from OI airglow layers provide convenience to systematically investigate the morphologic feature and evolution of ionospheric plasma irregularities over China. Based on the airglow network observations, we mainly report some important research results of ionospheric plasma irregularities in recent years. These findings include (1) statistical characteristic of equatorial plasma bubble (EPB) over China, (2) the influences of severe extreme weather events on the ionosphere, (3) interaction between medium-scale traveling ionospheric disturbance (MSTIDs) and ionospheric irregularity, and (4) some new phenomena of ionospheric irregularities.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document