scholarly journals P wave tomography for 3‐D radial and azimuthal anisotropy beneath Greenland and surrounding regions

2021 ◽  
Author(s):  
Genti Toyokuni ◽  
Dapeng Zhao
1994 ◽  
Vol 100 (1) ◽  
pp. 4-23 ◽  
Author(s):  
Yoshio Fukao ◽  
Sigenori Maruyama ◽  
Masayuki Obayashi ◽  
Hiroshi Inoue
Keyword(s):  
P Wave ◽  

2020 ◽  
Author(s):  
Genti Toyokuni ◽  
Takaya Matsuno ◽  
Dapeng Zhao
Keyword(s):  
P Wave ◽  

Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. D161-D170 ◽  
Author(s):  
Xiaoxia Xu ◽  
Ilya Tsvankin

Compensation for geometrical spreading along a raypath is one of the key steps in AVO (amplitude-variation-with-offset) analysis, in particular, for wide-azimuth surveys. Here, we propose an efficient methodology to correct long-spread, wide-azimuth reflection data for geometrical spreading in stratified azimuthally anisotropic media. The P-wave geometrical-spreading factor is expressed through the reflection traveltime described by a nonhyperbolic moveout equation that has the same form as in VTI (transversely isotropic with a vertical symmetry axis) media. The adapted VTI equation is parameterized by the normal-moveout (NMO) ellipse and the azimuthally varying anellipticity parameter [Formula: see text]. To estimate the moveout parameters, we apply a 3D nonhyperbolic semblance algorithm of Vasconcelos and Tsvankin that operates simultaneously with traces at all offsets andazimuths. The estimated moveout parameters are used as the input in our geometrical-spreading computation. Numerical tests for models composed of orthorhombic layers with strong, depth-varying velocity anisotropy confirm the high accuracy of our travetime-fitting procedure and, therefore, of the geometrical-spreading correction. Because our algorithm is based entirely on the kinematics of reflection arrivals, it can be incorporated readily into the processing flow of azimuthal AVO analysis. In combination with the nonhyperbolic moveout inversion, we apply our method to wide-azimuth P-wave data collected at the Weyburn field in Canada. The geometrical-spreading factor for the reflection from the top of the fractured reservoir is clearly influenced by azimuthal anisotropy in the overburden, which should cause distortions in the azimuthal AVO attributes. This case study confirms that the azimuthal variation of the geometrical-spreading factor often is comparable to or exceeds that of the reflection coefficient.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. P57-P70 ◽  
Author(s):  
Shaun Strong ◽  
Steve Hearn

Survey design for converted-wave (PS) reflection is more complicated than for standard P-wave surveys, due to raypath asymmetry and increased possibility of phase distortion. Coal-scale PS surveys (depth [Formula: see text]) require particular consideration, partly due to the particular physical properties of the target (low density and low velocity). Finite-difference modeling provides a pragmatic evaluation of the likely distortion due to inclusion of postcritical reflections. If the offset range is carefully chosen, then it may be possible to incorporate high-amplitude postcritical reflections without seriously degrading the resolution in the stack. Offsets of up to three times target depth may in some cases be usable, with appropriate quality control at the data-processing stage. This means that the PS survey design may need to handle raypaths that are highly asymmetrical and that are very sensitive to assumed velocities. A 3D-PS design was used for a particular coal survey with the target in the depth range of 85–140 m. The objectives were acceptable fold balance between bins and relatively smooth distribution of offset and azimuth within bins. These parameters are relatively robust for the P-wave design, but much more sensitive for the case of PS. Reduction of the source density is more acceptable than reduction of the receiver density, particularly in terms of the offset-azimuth distribution. This is a fortuitous observation in that it improves the economics of a dynamite source, which is desirable for high-resolution coal-mine planning. The final-survey design necessarily allows for logistical and economic considerations, which implies some technical compromise. However, good fold, offset, and azimuth distributions are achieved across the survey area, yielding a data set suitable for meaningful analysis of P and S azimuthal anisotropy.


2021 ◽  
Author(s):  
Janneke de Laat ◽  
Sergei Lebedev ◽  
Bruna Chagas de Melo ◽  
Nicolas Celli ◽  
Raffaele Bonadio

<p>We present a new S-wave velocity tomographic model of the Australian Plate, Aus21.  It is constrained by waveforms of 0.9 million seismograms with both the corresponding sources and stations located within the half-hemisphere centred at the Australian continent. Waveform inversion extracts structural information from surface, S- and multiple S-waves on the seismograms in the form of a set of linear equations. These equations are then combined in a large linear system and inverted jointly to obtain a tomographic model of S- and P-wave speeds and S-wave azimuthal anisotropy of the crust and upper mantle. The model has been validated by resolution tests and, for particular locations in Australia with notable differences with previous models, by independent inter-station measurements of surface-wave phase velocities, which we performed using available array data. </p><p> </p><p>Aus21 offers new insights into the structure and evolution of the Australian Plate and its boundaries. The Australian cratonic lithosphere occupies nearly all of the western and central Australia but shows substantial lateral heterogeneity. It extends up to the northern edge of the plate, where it is colliding with island arcs, without subducting. The rugged eastern boundary of the cratonic lithosphere provides a lithospheric definition of the Tasman Line. The thin, warm lithosphere below the eastern part of the continent, east of the Tasman Line, underlies the Cenozoic volcanism locations in the area. The lithosphere is also thin and warm below much of the Tasman Sea, underlying the Lord Howe hotspot and the submerged part of western Zealandia. A low velocity anomaly that may indicate the single source of the Lord Howe and Tasmanid hotspots is observed in the transition zone offshore the Australian continent, possibly also sourcing the East Australia hotspot. Another potential hotspot source is identified below the Kermadec Trench, causing an apparent slab gap in the overlying slab and possibly related to the Samoa Hotspot to the north. Below a portion of the South East Indian Ridge (the southern boundary of the Australian Plate) a pronounced high velocity anomaly is present in the 200-400 km depth range just east of the Australian-Antarctic Discordance (AAD), probably linked to the evolution of this chaotic ridge system.</p>


Sign in / Sign up

Export Citation Format

Share Document