The Australian Plate and underlying mantle from waveform tomography with massive datasets

Author(s):  
Janneke de Laat ◽  
Sergei Lebedev ◽  
Bruna Chagas de Melo ◽  
Nicolas Celli ◽  
Raffaele Bonadio

<p>We present a new S-wave velocity tomographic model of the Australian Plate, Aus21.  It is constrained by waveforms of 0.9 million seismograms with both the corresponding sources and stations located within the half-hemisphere centred at the Australian continent. Waveform inversion extracts structural information from surface, S- and multiple S-waves on the seismograms in the form of a set of linear equations. These equations are then combined in a large linear system and inverted jointly to obtain a tomographic model of S- and P-wave speeds and S-wave azimuthal anisotropy of the crust and upper mantle. The model has been validated by resolution tests and, for particular locations in Australia with notable differences with previous models, by independent inter-station measurements of surface-wave phase velocities, which we performed using available array data. </p><p> </p><p>Aus21 offers new insights into the structure and evolution of the Australian Plate and its boundaries. The Australian cratonic lithosphere occupies nearly all of the western and central Australia but shows substantial lateral heterogeneity. It extends up to the northern edge of the plate, where it is colliding with island arcs, without subducting. The rugged eastern boundary of the cratonic lithosphere provides a lithospheric definition of the Tasman Line. The thin, warm lithosphere below the eastern part of the continent, east of the Tasman Line, underlies the Cenozoic volcanism locations in the area. The lithosphere is also thin and warm below much of the Tasman Sea, underlying the Lord Howe hotspot and the submerged part of western Zealandia. A low velocity anomaly that may indicate the single source of the Lord Howe and Tasmanid hotspots is observed in the transition zone offshore the Australian continent, possibly also sourcing the East Australia hotspot. Another potential hotspot source is identified below the Kermadec Trench, causing an apparent slab gap in the overlying slab and possibly related to the Samoa Hotspot to the north. Below a portion of the South East Indian Ridge (the southern boundary of the Australian Plate) a pronounced high velocity anomaly is present in the 200-400 km depth range just east of the Australian-Antarctic Discordance (AAD), probably linked to the evolution of this chaotic ridge system.</p>

2005 ◽  
Vol 42 (6) ◽  
pp. 1205-1222 ◽  
Author(s):  
Gabriela Fernández-Viejo ◽  
Ron M Clowes ◽  
J Kim Welford

Shear-wave seismic data recorded along four profiles during the SNoRE 97 (1997 Slave – Northern Cordillera Refraction Experiment) refraction – wide-angle reflection experiment in northwestern Canada are analyzed to provide S-wave velocity (Vs) models. These are combined with previous P-wave velocity (Vp) models to produce cross sections of the ratio Vp/Vs for the crust and upper mantle. The Vp/Vs values are related to rock types through comparisons with published laboratory data. The Slave craton has low Vp/Vs values of 1.68–1.72, indicating a predominantly silicic crustal composition. Higher values (1.78) for the Great Bear and eastern Hottah domains of the Wopmay orogen imply a more mafic than average crustal composition. In the western Hottah and Fort Simpson arc, values of Vp/Vs drop to ∼1.69. These low values continue westward for 700 km into the Foreland and Omineca belts of the Cordillera, providing support for the interpretation from coincident seismic reflection studies that much of the crust from east of the Cordilleran deformation front to the Stikinia terrane of the Intermontane Belt consists of quartzose metasedimentary rocks. Stikinia shows values of 1.78–1.73, consistent with its derivation as a volcanic arc terrane. Upper mantle velocity and ratio values beneath the Slave craton indicate an ultramafic peridotitic composition. In the Wopmay orogen, the presence of low Vp/Vs ratios beneath the Hottah – Fort Simpson transition indicates the presence of pyroxenite in the upper mantle. Across the northern Cordillera, low Vp values and a moderate-to-high ratio in the uppermost mantle are consistent with the region's high heat flow and the possible presence of partial melt.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. P57-P70 ◽  
Author(s):  
Shaun Strong ◽  
Steve Hearn

Survey design for converted-wave (PS) reflection is more complicated than for standard P-wave surveys, due to raypath asymmetry and increased possibility of phase distortion. Coal-scale PS surveys (depth [Formula: see text]) require particular consideration, partly due to the particular physical properties of the target (low density and low velocity). Finite-difference modeling provides a pragmatic evaluation of the likely distortion due to inclusion of postcritical reflections. If the offset range is carefully chosen, then it may be possible to incorporate high-amplitude postcritical reflections without seriously degrading the resolution in the stack. Offsets of up to three times target depth may in some cases be usable, with appropriate quality control at the data-processing stage. This means that the PS survey design may need to handle raypaths that are highly asymmetrical and that are very sensitive to assumed velocities. A 3D-PS design was used for a particular coal survey with the target in the depth range of 85–140 m. The objectives were acceptable fold balance between bins and relatively smooth distribution of offset and azimuth within bins. These parameters are relatively robust for the P-wave design, but much more sensitive for the case of PS. Reduction of the source density is more acceptable than reduction of the receiver density, particularly in terms of the offset-azimuth distribution. This is a fortuitous observation in that it improves the economics of a dynamite source, which is desirable for high-resolution coal-mine planning. The final-survey design necessarily allows for logistical and economic considerations, which implies some technical compromise. However, good fold, offset, and azimuth distributions are achieved across the survey area, yielding a data set suitable for meaningful analysis of P and S azimuthal anisotropy.


2019 ◽  
Vol 220 (3) ◽  
pp. 1965-1977 ◽  
Author(s):  
Colton Lynner ◽  
Clinton Koch ◽  
Susan L Beck ◽  
Anne Meltzer ◽  
Lillian Soto-Cordero ◽  
...  

SUMMARY The Ecuadorian convergent margin has experienced many large mega-thrust earthquakes in the past century, beginning with a 1906 event that propagated along as much as 500 km of the plate interface. Many subsections of the 1906 rupture area have subsequently produced Mw ≥ 7.7 events, culminating in the 16 April 2016, Mw 7.8 Pedernales earthquake. Interestingly, no large historic events Mw ≥ 7.7 appear to have propagated southward of ∼1°S, which coincides with the subduction of the Carnegie Ridge. We combine data from temporary seismic stations deployed following the Pedernales earthquake with data recorded by the permanent stations of the Ecuadorian national seismic network to discern the velocity structure of the Ecuadorian forearc and Cordillera using ambient noise tomography. Ambient noise tomography extracts Vsv information from the ambient noise wavefield and provides detailed constraints on velocity structures in the crust and upper mantle. In the upper 10 km of the Ecuadorian forearc, we see evidence of the deepest portions of the sedimentary basins in the region, the Progreso and Manabí basins. At depths below 30 km, we observe a sharp delineation between accreted fast forearc terranes and the thick crust of the Ecuadorian Andes. At depths ∼20 km, we see a strong fast velocity anomaly that coincides with the subducting Carnegie Ridge as well as the southern boundary of large mega-thrust earthquakes. Our observations raise the possibility that upper-plate structure, in addition to the subducting Carnegie Ridge, plays a role in the large event segmentation seen along the Ecuadorian margin.


Geophysics ◽  
1999 ◽  
Vol 64 (4) ◽  
pp. 1312-1328 ◽  
Author(s):  
Heloise B. Lynn ◽  
Wallace E. Beckham ◽  
K. Michele Simon ◽  
C. Richard Bates ◽  
M. Layman ◽  
...  

Reflection P- and S-wave data were used in an investigation to determine the relative merits and strengths of these two data sets to characterize a naturally fractured gas reservoir in the Tertiary Upper Green River formation. The objective is to evaluate the viability of P-wave seismic to detect the presence of gas‐filled fractures, estimate fracture density and orientation, and compare the results with estimates obtained from the S-wave data. The P-wave response to vertical fractures must be evaluated at different source‐receiver azimuths (travelpaths) relative to fracture strike. Two perpendicular lines of multicomponent reflection data were acquired approximately parallel and normal to the dominant strike of Upper Green River fractures as obtained from outcrop, core analysis, and borehole image logs. The P-wave amplitude response is extracted from prestack amplitude variation with offset (AVO) analysis, which is compared to isotropic‐model AVO responses of gas sand versus brine sand in the Upper Green River. A nine‐component vertical seismic profile (VSP) was also obtained for calibration of S-wave reflections with P-wave reflections, and support of reflection S-wave results. The direction of the fast (S1) shear‐wave component from the reflection data and the VSP coincides with the northwest orientation of Upper Green River fractures, and the direction of maximum horizontal in‐situ stress as determined from borehole ellipticity logs. Significant differences were observed in the P-wave AVO gradient measured parallel and perpendicular to the orientation of Upper Green River fractures. Positive AVO gradients were associated with gas‐producing fractured intervals for propagation normal to fractures. AVO gradients measured normal to fractures at known waterwet zones were near zero or negative. A proportional relationship was observed between the azimuthal variation of the P-wave AVO gradient as measured at the tops of fractured intervals, and the fractional difference between the vertical traveltimes of split S-waves (the “S-wave anisotropy”) of the intervals.


2014 ◽  
Vol 151 (6) ◽  
pp. 1051-1071 ◽  
Author(s):  
ROSALDA PUNTURO ◽  
ROSOLINO CIRRINCIONE ◽  
EUGENIO FAZIO ◽  
PATRIZIA FIANNACCA ◽  
HARTMUT KERN ◽  
...  

AbstractAt the southern boundary of the Rhodope Massif, NE Greece, the Kavala Shear Zone (KSZ) represents an example of the Eastern Mediterranean deep-seated extensional tectonic setting. During Miocene time, extensional deformation favoured syntectonic emplacement and subsequent exhumation of plutonic bodies. This paper deals with the strain-related changes in macroscopic, geochemical and microstructural properties of the lithotypes collected along the KSZ, comprising granitoids from the pluton, aplitic dykes and host rock gneisses. Moreover, we investigated the evolution of seismic anisotropy on a suite of granitoid mylonites as a result of progressive strain. Isotropic compressional and shear wave velocities (Vp,Vs) and densities calculated from modal proportions and single-crystal elastic properties at given pressure–temperature (P–T) conditions are compared to respective experimental data including the directional dependence (anisotropy) of wave velocities. Compared to the calculated isotropic velocities, which are similar for all of the investigated mylonites (average values:Vp~ 5.87 km s−1,Vs~ 3.4 km s−1,Vp/Vs= 1.73 and density = 2.65 g cm−3), the seismic measurements give evidence for marked P-wave velocity anisotropy up to 6.92% (at 400 MPa) in the most deformed rock due to marked microstructural changes with progressive strain, as highlighted by the alignment of mica, chlorite minerals and quartz ribbons. The highest P- and S-wave velocities are parallel to the foliation plane and lowest normal to the foliation plane. Importantly,Vpremains constant within the foliation with progressive strain, but decreases normal to foliation. The potential of the observed seismic anisotropy of the KSZ mylonites with respect to detectable seismic reflections is briefly discussed.


2021 ◽  
Vol 43 (2) ◽  
pp. 28-44
Author(s):  
T. Janik ◽  
V. Starostenko ◽  
P. Aleksandrowski ◽  
T. Yegorova ◽  
W. Czuba ◽  
...  

The wide-angle reflection and refraction (WARR) TTZ-South transect carried out in 2018 crosses the SW region of Ukraine and the SE region of Poland. The TTZ-South profile targeted the structure of the Earth’s crust and upper mantle of the Trans-European Suture Zone, as well as the southwestern segment of the East European Craton (slope of the Ukrainian Shield). The ~550 km long profile (~230 km in Poland and ~320 km in western Ukraine) is an extension of previously realized projects in Poland, TTZ (1993) and CEL03 (2000). The deep seismic sounding study along the TTZ-South profile using TEXAN and DATA-CUBE seismic stations (320 units) made it possible to obtain high-quality seismic records from eleven shot points (six in Ukraine and five in Poland). This paper presents a smooth P wave velocity model based on first-arrival travel-time inversion using the FAST (First Arrival Seismic Tomography) code. The obtained image represents a preliminary velocity model which, according to the P wave velocities, consists of a sedimentary layer and the crystalline crust that could comprise upper, middle and lower crustal layers. The Moho interface, approximated by the 7.5 km/s isoline, is located at 45—47 km depth in the central part of the profile, shallowing to 40 and 37 km depth in the northern (Radom-Łysogуry Unit, Poland) and southern (Volyno-Podolian Monocline, Ukraine) segments of the profile, respectively. A peculiar feature of the velocity cross-section is a number of high-velocity bodies distinguished in the depth range of 10—35 km. Such high-velocity bodies were detected previously in the crust of the Radom-Łysogуry Unit. These bodies, inferred at depths of 10—35 km, could be allochthonous fragments of what was originally a single mafic body or separate mafic bodies intruded into the crust during the break-up of Rodinia in the Neoproterozoic, which was accompanied by considerable rifting. The manifestations of such magmatism are known in the NE part of the Volyno-Podolian Monocline, where the Vendian trap formation occurs at the surface.


2021 ◽  
Vol 62 (2) ◽  
pp. 223-238
Author(s):  
Yu.A. Kugaenko ◽  
V.A. Saltykov ◽  
I.Yu. Koulakov ◽  
V.M. Pavlov ◽  
P.V. Voropaev ◽  
...  

Abstract —The Udina volcanic complex located in the southeastern part of the Klyuchevskoy group of volcanoes in Kamchatka remained dormant for several thousand years, but the magmatic system beneath the area may be awakening judging by seismic unrest. Seismicity in the area is characterized by data from permanent regional seismic stations and campaign local stations, as well as by data of the Kamchatka earthquake catalog. Seismic activity having nucleated at shallow depths in the vicinities of the Udina volcanoes since October 2017 may reflect a beginning cycle of volcanism. The earthquakes are mainly long-period (LP) 0.5–5 Hz events, which are commonly attributed to the movement of viscous magma and resonance phenomena in magma conduits. Such earthquakes may be a response to inputs of new magma batches to the plumbing system that feeds the volcanoes and thus may be precursors of volcanic unrest. Seismic campaigns of May–July 2018 near the Udina complex provided more rigorous constraints on earthquake coordinates and origin depths and showed that most of the earthquakes originated within 5 km beneath the Bolshaya Udina Volcano. Seismic tomographic inversion using the LOTOS code revealed a zone of high P-wave velocities, low S-wave velocities, and a high vP/vS ratio directly beneath the volcano. Such a combination of parameters typically occurs in active volcanic areas and marks intrusion of partially molten magma and/or liquid fluids. The velocity anomaly detected in 2018 is shallower than that recovered in 2014–2015. The seismic evidence, along with the available geological and geophysical data, record the movement of viscous magma related to the Udina feeding system in the middle crust, which is implicit proof for connection between the intermediate crustal and deep mantle magma sources renewed after a long lull.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. WA125-WA133 ◽  
Author(s):  
Boris Gurevich ◽  
Marina Pervukhina ◽  
Dina Makarynska

One of the main causes of azimuthal anisotropy in sedimentary rocks is anisotropy of tectonic stresses in the earth’s crust. We have developed an analytic model for seismic anisotropy caused by the application of a small anisotropic stress. We first considered an isotropic linearly elastic medium (porous or nonporous) permeated by a distribution of discontinuities with random (isotropic) orientation (such as randomly oriented compliant grain contacts or cracks). The geometry of individual discontinuities is not specified. Instead, their behavior is defined by a ratio B of the normal to tangential excess compliances. When this isotropic rock is subjected to a small compressive stress (isotropic or anisotropic), the number of cracks along a particular plane is reduced in proportion to the normal stress traction acting on that plane. This effect is modeled using the Sayers-Kachanov noninteractive approximation. The model predicts that such anisotropic crack closure yields elliptical anisotropy, regardless of the value of the compliance ratio B. It also predicts the ratio of Thomsen’s anisotropy parameters [Formula: see text] as a function of the compliance ratio B and Poisson’s ratio of the unstressed rock. A comparison of the model predictions with the results of laboratory measurements indicates a reasonable agreement for moderate magnitudes of uniaxial stress (as high as 30 MPa). These results can be used for differentiating stress-induced anisotropy from that caused by aligned fractures. Conversely, if the cause of anisotropy is known, then the anisotropy pattern allows one to estimate P-wave anisotropy from S-wave anisotropy.


Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 45-63 ◽  
Author(s):  
V. Baptiste ◽  
A. Tommasi

Abstract. We calculated the seismic properties of 47 mantle xenoliths from 9 kimberlitic pipes in the Kaapvaal craton based on their modal composition, the crystal-preferred orientations (CPO) of olivine, ortho- and clinopyroxene, and garnet, the Fe content of olivine, and the pressures and temperatures at which the rocks were equilibrated. These data allow constraining the variation of seismic anisotropy and velocities within the cratonic mantle. The fastest P and S2 wave propagation directions and the polarization of fast split shear waves (S1) are always subparallel to olivine [100] axes of maximum concentration, which marks the lineation (fossil flow direction). Seismic anisotropy is higher for high olivine contents and stronger CPO. Maximum P wave azimuthal anisotropy (AVp) ranges between 2.5 and 10.2% and the maximum S wave polarization anisotropy (AVs), between 2.7 and 8%. Changes in olivine CPO symmetry result in minor variations in the seismic anisotropy patterns, mainly in the apparent isotropy directions for shear wave splitting. Seismic properties averaged over 20 km-thick depth sections are, therefore, very homogeneous. Based on these data, we predict the anisotropy that would be measured by SKS, Rayleigh (SV) and Love (SH) waves for five endmember orientations of the foliation and lineation. Comparison to seismic anisotropy data from the Kaapvaal shows that the coherent fast directions, but low delay times imaged by SKS studies, and the low azimuthal anisotropy with with the horizontally polarized S waves (SH) faster than the vertically polarized S wave (SV) measured using surface waves are best explained by homogeneously dipping (45°) foliations and lineations in the cratonic mantle lithosphere. Laterally or vertically varying foliation and lineation orientations with a dominantly NW–SE trend might also explain the low measured anisotropies, but this model should also result in backazimuthal variability of the SKS splitting data, not reported in the seismological data. The strong compositional heterogeneity of the Kaapvaal peridotite xenoliths results in up to 3% variation in density and in up to 2.3% variation of Vp, Vs, and Vp / Vs ratio. Fe depletion by melt extraction increases Vp and Vs, but decreases the Vp / Vs ratio and density. Orthopyroxene enrichment due to metasomatism decreases the density and Vp, strongly reducing the Vp / Vs ratio. Garnet enrichment, which was also attributed to metasomatism, increases the density, and in a lesser extent Vp and the Vp / Vs ratio. Comparison of density and seismic velocity profiles calculated using the xenoliths' compositions and equilibration conditions to seismological data in the Kaapvaal highlights that (i) the thickness of the craton is underestimated in some seismic studies and reaches at least 180 km, (ii) the deep sheared peridotites represent very local modifications caused and oversampled by kimberlites, and (iii) seismological models probably underestimate the compositional heterogeneity in the Kaapvaal mantle root, which occurs at a scale much smaller than the one that may be sampled seismologically.


2021 ◽  
Vol 7 (2) ◽  
pp. 58-64
Author(s):  
R. K. Tiwari ◽  
H. Paudyal

A strong Mw 7.8 (depth = 8.2 km) earthquake initiated ~80 km northwest of the Kathmandu on 25 April of 2015 was followed by the Mw 7.3 (depth = 15 km) earthquake on 12 May. The seismic phases of these earthquakes were predicted at Kakani, Kathmandu seismic station (27.80°N and 85.28°E) using software model AK135 . The model predicts 21 arrivals for Gorkha earthquake with first p phase arriving at incident angle 82.65° in 11.516 seconds and final phase SKIKSSKIKS in 3270.791 seconds with incident angle 0.02°. Similarly, for the Dolakha earthquake 27 arrivals are predicted with the first arrival p phase at incident angle 74.35° in 14.504 seconds and final arrival SKIKSSKIKS phase at incident angle 0.03° in 3268.823 seconds. The 5 depth phases and 8 core phases predicted are similar for both the earthquakes while 8 and 12 mantle phases are predicted for Gorkha earthquake and Dolakha earthquake respectively. In addition, two crustal phases (Pn, Sn) were predicted only for Dolakha earthquake. The additional phases are critically refracted seismic phases indicating the existence of the Moho discontinuity between the crust and upper mantle. Their existence for Dolakha earthquake could be the indication of different geological provinces of the source region of the earthquakes, differing in age, crustal thickness, temperature, and tectonic stress. The ratio of P wave ad S wave velocity is found to be 1.67 for the regions. These seismic phases reflect their sensitivity to different layers of the earth and carry information about the geometrical and physical properties of discontinuities inside the earth.


Sign in / Sign up

Export Citation Format

Share Document