australian plate
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 53)

H-INDEX

21
(FIVE YEARS 3)

Author(s):  
Ida Surya Surya ◽  
I Gusti Ngurah Suwetha

Geologically, Indonesia is located at the confluence of three of the world's main plates, namely the Indo-Australian Plate, the Eurasian Plate, and the Pacific Plate, which often cause disasters, for example drought. Central Lombok Regency is one of the regencies in West Nusa Tenggara, with these two seasons, most often hit by drought disasters, considering that the rainfall in Central Lombok is very small. So that disaster education and preparedness are needed for residents. This article uses qualitative research methods. The results of the study show that climate field schools have an important role in disaster education. Climate field school is a form of education for farmers that is very useful especially in understanding the weather and climate combined with new agricultural techniques that will allow farmers to plant different crops at different times of the year. Meanwhile, for preparedness, it is carried out through several programs in the form of urging and asking farmers to be disciplined in carrying out cropping patterns according to the zoning in which they are located (rice-padi-palawija or padi-palawija-palawija), mapping of land related to cropping patterns, planting rice parity that requires little water, namely the Situpagendit variety, and urges farmers to insure their rice plants, which is Rp. 36.000/ Ha for one planting season at PT. JASINDI.   Keywords: Indonesia's geological location, disaster, disaster education.


2021 ◽  
pp. 417
Author(s):  
Daniel Christianto ◽  
Sunarjo Leman ◽  
Alvira Nathania Tanika ◽  
Maria Kevinia Sutanto ◽  
Vryscilia Marcella

A natural disaster is a natural event that has a major impact on the human population. One of the natural events that became the focus of this PKM activity was an earthquake. Earthquakes are natural events in the form of vibrations or wavy movements on the earth's crust caused by internal forces. Earthquakes caused by shifting of the ground are called tectonic earthquakes and earthquakes caused by volcanoes are called volcanic earthquakes. Indonesia is an earthquake-prone area because it is located on three plates, namely the Eurasian Plate, the Pacific Plate, and the Indo-Australian Plate. Only in western, central and southern Kalimantan, the source of the earthquake was not found. To reduce the impact of risk during an earthquake, it is necessary to carry out an earthquake mitigation to the community in areas prone to earthquakes. Earthquake mitigation that will be carried out in this PKM activity is in the form of counseling through online webinars to prevent physical contact or crowds, related to the Covid19 pandemic. As a result, from the questions asked by participants, there is still a lack of understanding of the dangers of changing the function of the building or the building's use limit based on the design load and the condition of the building after the earthquake. So for the next PKM, it is recommended to make general information guidelines such as examples of photos or pictures about the condition of buildings that need to be reviewed for repairs or are no longer suitable for use after being hit by an earthquake.Bencana alam adalah suatu peristiwa alam yang mengakibatkan dampak besar bagi populasi manusia. Salah satu peristiwa alam yang menjadi fokus dalam kegiatan PKM ini adalah gempa bumi. Gempa bumi merupakan fenomena alam berupa getaran atau gerakan bergelombang pada lempeng bumi yang disebabkan oleh tenaga yang berasaldari dalam bumi. Gempa yang disebabkan oleh pergeseran tanah dinamakan gempa tektonik dan gempa yang disebabkan oleh gunung berapi dinamakan gempa vulkanik. Indonesia merupakan daerah rawan gempa karena terletak di atas tiga lempeng yakni Lempeng Eurasia, Lempeng Pasifik, dan Lempeng Indo-Australia. Hanya di Kalimantan bagian barat, tengah, dan selatan, sumber gempa bumi tidak ditemukan. Untuk mengurangi dampak resiko pada saat gempa perlu dilakukan suatu mitigasi gempa kepada masyarakat di daerah yang rawan terjadi gempa bumi. Mitigasi gempa yang akan dilakukan dalam kegiatan PKM ini berupa penyuluhan melalui webinar secara online untuk mencegah kontak fisik atau kerumunan, berhubungan dengan pandemi Covid19. Hasilnya, dari pertanyaan yang diajukan peserta, masih kurang pemahaman bahaya dari mengubah fungsi guna bangunan atau batas guna bangunan berdasarkan beban desain dan kondisi bangunan setelah gempa. Maka untuk PKM selanjutnya, disarankan membuat panduan informasi secara umum seperti contoh foto atau gambar tentang kondisi bangunan yang perlu ditinjau untuk perbaikan atau tidak layak guna lagi setelah terkena gempa.


2021 ◽  
Author(s):  
◽  
Elizabeth Ann Cairns

<p>The Woodlark Rift in SE Papua New Guinea is a continental rift to the west of active oceanic spreading in the Woodlark Basin, which separates the Australian Plate to the south from the relatively anticlockwise rotating Woodlark Plate to the north. During Pliocene to Recent times the Woodlark Rift has been the setting for rapid exhumation of the world’s youngest UHP rocks (Baldwin et al., 2004, 2008; Gordon et al, 2012; Little et al., 2011), and is currently one of few places on the globe where active continental breakup is occurring ahead of a propagating oceanic spreading centre. While the Woodlark Basin contains a record of oceanic spreading since ˜6 Ma (Taylor et al., 1999), and GPS data describe present-day crustal motions (Wallace et al., manuscript in review), the Neogene temporal and kinematic evolution of continental extension in the Woodlark Rift is less well constrained. We compare Characteristic magnetization directions for six formations, Early Miocene (˜20 Ma) to Late Pliocene (3 ± 0.5), with contemporaneous expected field directions corresponding to Australian Plate paleomagnetic pole locations. We interpret declination anomalies (at 95% confidence) to estimate finite vertical-axis rotations of crustal blocks with respect to a fixed Australian Plate. Temporal and spatial relationships between declination anomalies for six formation mean directions, across four paleomagnetic localities, provide new evidence to constrain aspects of the Miocene to Recent history of the Woodlark Rift.  We obtained 250 oriented core samples from Miocene to Pliocene aged rocks at four localities in the Woodlark Rift. Components of Characteristic Remanent Magnetization (ChRM) have been determined from step-wise thermal and alternating field demagnetization profiles of >300 individual specimens. A total of 157 ChRM components contribute to the calculation of representative paleomagnetic directions for six formations, which have undergone vertical-axis rotations with respect to the Australian Plate associated with development of the Woodlark Rift.  Pliocene volcanic rocks at two key localities near the northern extent of the rift record that: 1) The Amphlett Islands has experienced 10.1 ± 7.6° of anticlockwise rotation since 3 ± 0.5 Ma; 2) NW Normanby Island has undergone a 16.3 ± 9.5° clockwise rotation during the same time interval. Sedimentary rocks at Cape Vogel Peninsula on the northern coast of the mainland Papuan Peninsula, record variable anticlockwise finite rotations of 28.4 ± 10.9° and 12.4 ± 5.5° for Early and Middle Miocene rocks respectively, in contrast to a younger clockwise rotation of 6.5 ± 11.2° for Late Miocene rocks. At the Suau Coast locality, on the south eastern coast of the Papuan Peninsula, Late Miocene dikes record 22.7 ± 13.3° of anticlockwise rotation.  At the Amphlett Islands and NW Normanby localities paleomagnetic data are consistent with current GPS plate motions, suggesting the current kinematics in the rift were established by at least ˜3 Ma. The Amphlett Islands result is consistent with the rate of Pliocene sea floor spreading in the Woodlark Basin, suggesting that locality can be considered as fully on the Woodlark Plate. The clockwise rotation indicated at NW Normanby Island may record development of an incipient dextral transfer fault within an active part of the Woodlark Rift.  Time-varying declination anomalies from the Cape Vogel Peninsula suggest that rifting began there by ˜15 Ma, 7 Ma earlier than previously inferred based on stratigraphic evidence. Furthermore, paleomagnetic data from the south coast of the Papuan Peninsula suggests that early rifting extended further south, and has since contracted to where continental extension is currently accommodated north of the Papuan Peninsula.</p>


2021 ◽  
Author(s):  
◽  
Elizabeth Ann Cairns

<p>The Woodlark Rift in SE Papua New Guinea is a continental rift to the west of active oceanic spreading in the Woodlark Basin, which separates the Australian Plate to the south from the relatively anticlockwise rotating Woodlark Plate to the north. During Pliocene to Recent times the Woodlark Rift has been the setting for rapid exhumation of the world’s youngest UHP rocks (Baldwin et al., 2004, 2008; Gordon et al, 2012; Little et al., 2011), and is currently one of few places on the globe where active continental breakup is occurring ahead of a propagating oceanic spreading centre. While the Woodlark Basin contains a record of oceanic spreading since ˜6 Ma (Taylor et al., 1999), and GPS data describe present-day crustal motions (Wallace et al., manuscript in review), the Neogene temporal and kinematic evolution of continental extension in the Woodlark Rift is less well constrained. We compare Characteristic magnetization directions for six formations, Early Miocene (˜20 Ma) to Late Pliocene (3 ± 0.5), with contemporaneous expected field directions corresponding to Australian Plate paleomagnetic pole locations. We interpret declination anomalies (at 95% confidence) to estimate finite vertical-axis rotations of crustal blocks with respect to a fixed Australian Plate. Temporal and spatial relationships between declination anomalies for six formation mean directions, across four paleomagnetic localities, provide new evidence to constrain aspects of the Miocene to Recent history of the Woodlark Rift.  We obtained 250 oriented core samples from Miocene to Pliocene aged rocks at four localities in the Woodlark Rift. Components of Characteristic Remanent Magnetization (ChRM) have been determined from step-wise thermal and alternating field demagnetization profiles of >300 individual specimens. A total of 157 ChRM components contribute to the calculation of representative paleomagnetic directions for six formations, which have undergone vertical-axis rotations with respect to the Australian Plate associated with development of the Woodlark Rift.  Pliocene volcanic rocks at two key localities near the northern extent of the rift record that: 1) The Amphlett Islands has experienced 10.1 ± 7.6° of anticlockwise rotation since 3 ± 0.5 Ma; 2) NW Normanby Island has undergone a 16.3 ± 9.5° clockwise rotation during the same time interval. Sedimentary rocks at Cape Vogel Peninsula on the northern coast of the mainland Papuan Peninsula, record variable anticlockwise finite rotations of 28.4 ± 10.9° and 12.4 ± 5.5° for Early and Middle Miocene rocks respectively, in contrast to a younger clockwise rotation of 6.5 ± 11.2° for Late Miocene rocks. At the Suau Coast locality, on the south eastern coast of the Papuan Peninsula, Late Miocene dikes record 22.7 ± 13.3° of anticlockwise rotation.  At the Amphlett Islands and NW Normanby localities paleomagnetic data are consistent with current GPS plate motions, suggesting the current kinematics in the rift were established by at least ˜3 Ma. The Amphlett Islands result is consistent with the rate of Pliocene sea floor spreading in the Woodlark Basin, suggesting that locality can be considered as fully on the Woodlark Plate. The clockwise rotation indicated at NW Normanby Island may record development of an incipient dextral transfer fault within an active part of the Woodlark Rift.  Time-varying declination anomalies from the Cape Vogel Peninsula suggest that rifting began there by ˜15 Ma, 7 Ma earlier than previously inferred based on stratigraphic evidence. Furthermore, paleomagnetic data from the south coast of the Papuan Peninsula suggests that early rifting extended further south, and has since contracted to where continental extension is currently accommodated north of the Papuan Peninsula.</p>


2021 ◽  
Author(s):  
◽  
Nicolas Eduard Alype Brikke

<p>The three-dimensional (3D) evolution of the Australian-Pacifi c late boundary in the central South Island of New Zealand is investigated by analysing seismic data from the South Island GeopHysical Transect (SIGHT) project and by using a novel 3D tomography inversion method, FMTOMO. A 380 km-long, 350 km-wide and 56 km-deep 3D tomography image of the P-wave velocity structure and interface geometry of the crust and upper-mantle is constructed by inverting for 164,048 traveltime picks. The picks are both coincident (in-line) and oblique (cross-line) to the survey geometry. The traveltime picks and station elevations were static corrected and reduced to basement level, respectively, to eliminate the highly variable sedimentary component of the inversion process. Synthetic testing of the model space was carried out to help the interpretation of the solution model features. Some model features are consistent with previous results. Usual crustal velocities (5.5 km/s close to the surface and 6.3 km/s at the bottom of the crust) are found at distal ends of the collision zone. Lower velocities (5.7 km/s) intrude the mid-crust of the Australian plate to depths of about 20 km, which is consistent with the downward  flexure of the Australian plate. A low velocity zone (5.9 - 6.1 km/s) is situated to the southeast of the Alpine fault, which is consistent with the Alpine fault low velocity zone. Furthermore, a high-velocity body (6.3 km/s) is observed in the top 10 km of the upper-crust immediately above the thickened crust between the west coast of the South Island and the Main Divide of the Southern Alps. This body is interpreted as a drier, more rigid body of schist. A zone of low velocity (5.8 km/s reaching 8 km depth) is observed immediately to the southeast of the aforementioned high velocity body. The feature is interpreted as a back-shearing faulting structure through which fluid escape towards the surface. A flexural analysis of an apparent  flexure profile of the Australian Plate along SIGHT line 01 yielded a  flexural parameter, a, of 89 km, an elastic thickness, Te, of 14 km and a  flexural rigidity, D, of 1.5 : 10^(23) N.m. These results are consistent with results of a  flexural analysis of SIGHT line 02W [Harrison 1999]. The following features are derived from the solution model. An apparent gradient in uppermantle anisotropy is observed with seismic velocities increasing towards the south of the model. Also, the geometry of the Mohorovicic discontinuity is apparently smooth between the two main SIGHT transects. The tomography method used in this project proves to be complementary to other coarser-scale and finer-scale seismic studies of the region in that it brings out features that were not seen by them. Notwithstanding that the interface inversion process remains to be perfected in the software, the velocity inversion produced a satisfactory solution model.</p>


2021 ◽  
Author(s):  
◽  
Nicolas Eduard Alype Brikke

<p>The three-dimensional (3D) evolution of the Australian-Pacifi c late boundary in the central South Island of New Zealand is investigated by analysing seismic data from the South Island GeopHysical Transect (SIGHT) project and by using a novel 3D tomography inversion method, FMTOMO. A 380 km-long, 350 km-wide and 56 km-deep 3D tomography image of the P-wave velocity structure and interface geometry of the crust and upper-mantle is constructed by inverting for 164,048 traveltime picks. The picks are both coincident (in-line) and oblique (cross-line) to the survey geometry. The traveltime picks and station elevations were static corrected and reduced to basement level, respectively, to eliminate the highly variable sedimentary component of the inversion process. Synthetic testing of the model space was carried out to help the interpretation of the solution model features. Some model features are consistent with previous results. Usual crustal velocities (5.5 km/s close to the surface and 6.3 km/s at the bottom of the crust) are found at distal ends of the collision zone. Lower velocities (5.7 km/s) intrude the mid-crust of the Australian plate to depths of about 20 km, which is consistent with the downward  flexure of the Australian plate. A low velocity zone (5.9 - 6.1 km/s) is situated to the southeast of the Alpine fault, which is consistent with the Alpine fault low velocity zone. Furthermore, a high-velocity body (6.3 km/s) is observed in the top 10 km of the upper-crust immediately above the thickened crust between the west coast of the South Island and the Main Divide of the Southern Alps. This body is interpreted as a drier, more rigid body of schist. A zone of low velocity (5.8 km/s reaching 8 km depth) is observed immediately to the southeast of the aforementioned high velocity body. The feature is interpreted as a back-shearing faulting structure through which fluid escape towards the surface. A flexural analysis of an apparent  flexure profile of the Australian Plate along SIGHT line 01 yielded a  flexural parameter, a, of 89 km, an elastic thickness, Te, of 14 km and a  flexural rigidity, D, of 1.5 : 10^(23) N.m. These results are consistent with results of a  flexural analysis of SIGHT line 02W [Harrison 1999]. The following features are derived from the solution model. An apparent gradient in uppermantle anisotropy is observed with seismic velocities increasing towards the south of the model. Also, the geometry of the Mohorovicic discontinuity is apparently smooth between the two main SIGHT transects. The tomography method used in this project proves to be complementary to other coarser-scale and finer-scale seismic studies of the region in that it brings out features that were not seen by them. Notwithstanding that the interface inversion process remains to be perfected in the software, the velocity inversion produced a satisfactory solution model.</p>


2021 ◽  
Author(s):  
◽  
Vasiliki Mouslopoulou

<p>The North Island of New Zealand sits astride the Hikurangi margin along which the oceanic Pacific Plate is being obliquely subducted beneath the continental Australian Plate. The North Island Fault System1 (NIFS), in the North Island of New Zealand, is the principal active strike-slip fault system in the overriding Australian Plate accommodating up to 30% of the margin parallel plate motion. This study focuses on the northern termination of the NIFS, near its intersection with the active Taupo Rift, and comprises three complementary components of research: 1) the investigation of the late Quaternary (c. 30 kyr) geometries and kinematics of the northern NIFS as derived from displaced geomorphic landforms and outcrop geology, 2) examination of the spatial and temporal distribution of  paleoearthquakes in the NIFS over the last 18 kyr, as derived by fault-trenching and displaced landforms, and consideration of how these distributions may have produced the documented late Quaternary (c. 30 kyr) kinematics of the northern NIFS, and 3) Investigation of the temporal stability of the late Quaternary (c. 30 kyr) geometries and kinematics throughout the Quaternary (1-2 Ma), derived from gravity, seismic-reflection, drillhole, topographic and outcrop data. The late Quaternary (c. 30 kyr) kinematics of the northern NIFS transition northward along strike, from strike-slip to oblique-normal faulting, adjacent to the rift. With increasing proximity to the Taupo Rift the slip vector pitch on each of the faults in the NIFS steepens gradually by up to 60 degrees, while the mean fault-dip decreases from 90 degrees to 60 degrees W. Adjustments in the kinematics of the NIFS reflect the gradual accommodation of the NW-SE extension that is distributed outside the main physiographic boundary of the Taupo Rift. Sub-parallelism of slip vectors in the NIFS with the line of intersection between the two synchronous fault systems reduces potential space problems and facilitates the development of a kinematically coherent fault intersection, which allows the strike-slip component of slip to be transferred into the rift. Transfer of displacement from the NIFS into the rift accounts for a significant amount of the northeastward increase of extension along the rift. Steepening of the pitch of slip vectors towards the northern termination of the NIFS allows the kinematics and geometry of faulting to change efficiently, from strike-lip to normal faulting, providing an alternative mechanism to vertical axis rotations for terminating large strike-lip faults. Analyses of kinematic constraints from worldwide examples of synchronous strike-lip and normal faults that intersect to form two or three plate configurations, within either oceanic or continental crust, suggest that displacement is often transferred between the two fault systems in a similar manner to that documented at the NIFS - Taupo Rift fault intersection. The late Quaternary (c. 30 kyr) change in the kinematics of the NIFS along strike, from dominantly strike-slip to oblique-normal faulting, arises due to a combination of rupture arrest during individual earthquakes and variations in the orientation of the coseismic slip vectors. At least 80 % of all surface rupturing earthquakes appear to have terminated within the kinematic transition zone from strike-slip to oblique-normal slip. Fault segmentation reduces the magnitudes of large surface rupturing earthquakes in the northern NIFS from 7.4-7.6 to c. 7.0. Interdependence of throw rates between the NIFS and Taupo Rift suggests that the intersection of the two fault systems has functioned coherently for much of the last 0.6-1.5 Myr. Oblique-normal slip faults in the NIFS and the Edgecumbe Fault in the rift accommodated higher throw rates since 300 kyr than during the last 0.6-1.5 Myr. Acceleration of these throw rates may have occurred in response to eastward migration of rifting, increasing both the rates of faulting and the pitch of slip vectors. The late Quaternary (e.g. 30 kyr) kinematics, and perhaps also the stability, of the intersection zone has been geologically short lived and applied for the last c. 300 kyr.</p>


2021 ◽  
Author(s):  
◽  
Vasiliki Mouslopoulou

<p>The North Island of New Zealand sits astride the Hikurangi margin along which the oceanic Pacific Plate is being obliquely subducted beneath the continental Australian Plate. The North Island Fault System1 (NIFS), in the North Island of New Zealand, is the principal active strike-slip fault system in the overriding Australian Plate accommodating up to 30% of the margin parallel plate motion. This study focuses on the northern termination of the NIFS, near its intersection with the active Taupo Rift, and comprises three complementary components of research: 1) the investigation of the late Quaternary (c. 30 kyr) geometries and kinematics of the northern NIFS as derived from displaced geomorphic landforms and outcrop geology, 2) examination of the spatial and temporal distribution of  paleoearthquakes in the NIFS over the last 18 kyr, as derived by fault-trenching and displaced landforms, and consideration of how these distributions may have produced the documented late Quaternary (c. 30 kyr) kinematics of the northern NIFS, and 3) Investigation of the temporal stability of the late Quaternary (c. 30 kyr) geometries and kinematics throughout the Quaternary (1-2 Ma), derived from gravity, seismic-reflection, drillhole, topographic and outcrop data. The late Quaternary (c. 30 kyr) kinematics of the northern NIFS transition northward along strike, from strike-slip to oblique-normal faulting, adjacent to the rift. With increasing proximity to the Taupo Rift the slip vector pitch on each of the faults in the NIFS steepens gradually by up to 60 degrees, while the mean fault-dip decreases from 90 degrees to 60 degrees W. Adjustments in the kinematics of the NIFS reflect the gradual accommodation of the NW-SE extension that is distributed outside the main physiographic boundary of the Taupo Rift. Sub-parallelism of slip vectors in the NIFS with the line of intersection between the two synchronous fault systems reduces potential space problems and facilitates the development of a kinematically coherent fault intersection, which allows the strike-slip component of slip to be transferred into the rift. Transfer of displacement from the NIFS into the rift accounts for a significant amount of the northeastward increase of extension along the rift. Steepening of the pitch of slip vectors towards the northern termination of the NIFS allows the kinematics and geometry of faulting to change efficiently, from strike-lip to normal faulting, providing an alternative mechanism to vertical axis rotations for terminating large strike-lip faults. Analyses of kinematic constraints from worldwide examples of synchronous strike-lip and normal faults that intersect to form two or three plate configurations, within either oceanic or continental crust, suggest that displacement is often transferred between the two fault systems in a similar manner to that documented at the NIFS - Taupo Rift fault intersection. The late Quaternary (c. 30 kyr) change in the kinematics of the NIFS along strike, from dominantly strike-slip to oblique-normal faulting, arises due to a combination of rupture arrest during individual earthquakes and variations in the orientation of the coseismic slip vectors. At least 80 % of all surface rupturing earthquakes appear to have terminated within the kinematic transition zone from strike-slip to oblique-normal slip. Fault segmentation reduces the magnitudes of large surface rupturing earthquakes in the northern NIFS from 7.4-7.6 to c. 7.0. Interdependence of throw rates between the NIFS and Taupo Rift suggests that the intersection of the two fault systems has functioned coherently for much of the last 0.6-1.5 Myr. Oblique-normal slip faults in the NIFS and the Edgecumbe Fault in the rift accommodated higher throw rates since 300 kyr than during the last 0.6-1.5 Myr. Acceleration of these throw rates may have occurred in response to eastward migration of rifting, increasing both the rates of faulting and the pitch of slip vectors. The late Quaternary (e.g. 30 kyr) kinematics, and perhaps also the stability, of the intersection zone has been geologically short lived and applied for the last c. 300 kyr.</p>


2021 ◽  
Vol 2106 (1) ◽  
pp. 012014
Author(s):  
A Ijanatun ◽  
I Rosyida

Abstract The potentials for tsunami in Indonesia are spread over many areas, one of which is Purworejo. Purworejo has a high tsunami potential because it is located on the Indo-Australian plate. In Central Java, Purworejo occupies the 3rd position in the tsunami-prone area. Therefore, a route is needed to evacuate the population to mitigate the tsunami. This research focuses on two sub-districts, namely Ngombol and Purwodadi. The problems in this paper are: (1) Which points can be used as evacuation sites (2) How to model tsunami evacuation routes with graphs (3) What are the optimal evacuation routes. The method used to find the evacuation route is the VRP with time window. The algorithm used is Clarke Wright algorithm. The optimal evacuation route is obtained if all points are evacuated with minimal time and distance. From nine final evacuation points, only 4 points that fulfill criteria for the shortest distance and can be accessed by vehicles. There are eight final routes with minimum time of 42 minutes. Each of depots B3 and C2 has 3 routes. Whereas each of depots C4 and C5 has 1 route.


2021 ◽  
Vol 1 ◽  
pp. 1-7
Author(s):  
Rizki Kurniawati ◽  
Muhammad Ary Murti

As a country located among three major tectonic plate confluences, namely the Eurasian Plate, the Indo-Australian Plate, and the Pacific Plate, Indonesia is an earthquake-prone area. Information about the earthquake occurrences is distributed by the BMKG through social media, websites and television. However, it is undeniable that there are still people who do not have televisions or smartphones. Therefore, earthquake warning systems began to be widely developed. Furthermore, sensors for earthquake vibration detection have an important role in earthquake warning systems. So in this article, the author has conducted a literature study and analysis of the sensors commonly used in earthquake detection systems. This study aimed to present sensor recommendations to be used as earthquake sensors. The result of the literature study, that the author had done, is the selection of sensors is customized to the needs and budget of the project. A description of the sensor recommendations for each project has also been included in this article.


Sign in / Sign up

Export Citation Format

Share Document