scholarly journals “Time variable Earth gravity field models from the first spaceborne laser ranging interferometer"

Author(s):  
N. Pie ◽  
S. V. Bettadpur ◽  
M. Tamisiea ◽  
B. Krichman ◽  
H. Save ◽  
...  
2015 ◽  
Vol 6 (2) ◽  
pp. 101-108 ◽  
Author(s):  
A. P. Karpik ◽  
V. F. Kanushin ◽  
I. G. Ganagina ◽  
D. N. Goldobin ◽  
E. M. Mazurova

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
T. D. Papanikolaou ◽  
N. Papadopoulos

AbstractThe present study aims at the validation of global gravity field models through numerical investigation in gravity field functionals based on spherical harmonic synthesis of the geopotential models and the analysis of terrestrial data. We examine gravity models produced according to the latest approaches for gravity field recovery based on the principles of the Gravity field and steadystate Ocean Circulation Explorer (GOCE) and Gravity Recovery And Climate Experiment (GRACE) satellite missions. Furthermore, we evaluate the overall spectrum of the ultra-high degree combined gravity models EGM2008 and EIGEN-6C3stat. The terrestrial data consist of gravity and collocated GPS/levelling data in the overall Hellenic region. The software presented here implements the algorithm of spherical harmonic synthesis in a degree-wise cumulative sense. This approach may quantify the bandlimited performance of the individual models by monitoring the degree-wise computed functionals against the terrestrial data. The degree-wise analysis performed yields insight in the short-wavelengths of the Earth gravity field as these are expressed by the high degree harmonics.


2020 ◽  
Vol 12 (3) ◽  
pp. 586 ◽  
Author(s):  
Bihter Erol ◽  
Mustafa Serkan Işık ◽  
Serdar Erol

The launch of dedicated satellite missions at the beginning of the 2000s led to significant improvement in the determination of Earth gravity field models. As a consequence of this progress, both the accuracies and the spatial resolutions of the global geopotential models increased. However, the spectral behaviors and the accuracies of the released models vary mainly depending on their computation strategies. These strategies are briefly explained in this article. Comprehensive quality assessment of the gravity field models by means of spectral and statistical analyses provides a comparison of the gravity field mapping accuracies of these models, as well as providing an understanding of their progress. The practical benefit of these assessments by means of choosing an optimal model with the highest accuracy and best resolution for a specific application is obvious for a broad range of geoscience applications, including geodesy and geophysics, that employ Earth gravity field parameters in their studies. From this perspective, this study aims to evaluate the GOCE High-Level Processing Facility geopotential models including recently published sixth releases using different validation methods recommended in the literature, and investigate their performances comparatively and in addition to some other models, such as GOCO05S, GOGRA04S and EGM2008. In addition to the validation statistics from various countries, the study specifically emphasizes the numerical test results in Turkey. It is concluded that the performance improves from the first generation RL01 models toward the final RL05 models, which were based on the entire mission data. This outcome was confirmed when the releases of different computation approaches were considered. The accuracies of the RL05 models were found to be similar to GOCO05S, GOGRA04S and even to RL06 versions but better than EGM2008, in their maximum expansion degrees. Regarding the results obtained from these tests using the GPS/leveling observations in Turkey, the contribution of the GOCE data to the models was significant, especially between the expansion degrees of 100 and 250. In the study, the tested geopotential models were also considered for detailed geoid modeling using the remove-compute-restore method. It was found that the best-fitting geopotential model with its optimal expansion degree (please see the definition of optimal degree in the article) improved the high-frequency regional geoid model accuracy by almost 15%.


2021 ◽  
Vol 13 (17) ◽  
pp. 3491
Author(s):  
Luping Zhong ◽  
Krzysztof Sośnica ◽  
Matthias Weigelt ◽  
Bingshi Liu ◽  
Xiancai Zou

The Earth’s time-variable gravity field is of great significance to study mass change within the Earth’s system. Since 2002, the NASA-DLR Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE follow-on mission provide observations of monthly changes in the Earth gravity field with unprecedented accuracy and resolution by employing low-low satellite-to-satellite tracking (LLSST) measurements. In addition to LLSST, monthly gravity field models can be acquired from satellite laser ranging (SLR) and high-low satellite-to-satellite tracking (HLSST). The monthly gravity field solutions HLSST+SLR were derived by combining HLSST observations of low earth orbiting (LEO) satellites with SLR observations of geodetic satellites. Bandpass filtering was applied to the harmonic coefficients of HLSST+SLR solutions to reduce noise. In this study, we analyzed the performance of the monthly HLSST+SLR solutions in the spectral and spatial domains. The results show that: (1) the accuracies of HLSST+SLR solutions are comparable to those from GRACE for coefficients below degree 10, and significantly improved compared to those of SLR-only and HLSST-only solutions; (2) the effective spatial resolution could reach 1000 km, corresponding to the spherical harmonic coefficient degree 20, which is higher than that of the HLSST-only solutions. Compared with the GRACE solutions, the global mass redistribution features and magnitudes can be well identified from HLSST+SLR solutions at the spatial resolution of 1000 km, although with much noise. In the applications of regional mass recovery, the seasonal variations over the Amazon Basin and the long-term trend over Greenland derived from HLSST+SLR solutions truncated to degree 20 agree well with those from GRACE solutions without truncation, and the RMS of mass variations is 282 Gt over the Amazon Basin and 192 Gt in Greenland. We conclude that HLSST+SLR can be an alternative option to estimate temporal changes in the Earth gravity field, although with far less spatial resolution and lower accuracy than that offered by GRACE. This approach can monitor the large-scale mass transport during the data gaps between the GRACE and the GRACE follow-on missions.


2021 ◽  
Author(s):  
Federica Migliaccio ◽  
Mirko Reguzzoni ◽  
Khulan Batsukh ◽  
Oyku Koch

<p>In the ongoing MOCAST+ study (funded by the Italian Space Agency), the use of an enhanced cold atom interferometer is proposed for a satellite gravity mission. The instrument consists of an interferometric gravitational gradiometer with Strontium atoms, on which an optical frequency measurement is implemented by means of an ultra-stable laser, in order to also provide time measurements. The study is investigating whether this combination can give the possibility of improving the estimation of gravity models even at low harmonic degrees with inherent advantages in the modeling of mass transport and its global variations: this would represent fundamental information, e.g. in the study of variations in the hydrological cycle and relative mass exchange between atmosphere, oceans, cryosphere and solid Earth.</p><p>The main lines of the MOCAST+ proposal are: two satellites on a polar orbit (reference altitude 342 km) at a distance of about 100 km with atomic samples on board interrogated by the same clock laser (noise of the local oscillator in common). The atom interferometer should allow to collect observations of differences of the gravitational potential (which will contribute to the estimate of the low frequencies of the Earth gravity field model) and of second derivatives of the gravitational potential along one or more orthogonal directions, which will be not necessarily the same for the two satellites</p><p>In this presentation, the mathematical model for the application of the space-wise approach to the simulated data will be described, consisting in a filter - gridding - harmonic analysis scheme that is to be repeated for several Monte Carlo samples extracted for the same simulated scenario, in order to produce a sample estimate of the error covariance matrix of the harmonic coefficients.</p><p>The data analysis based on the formulated mathematical model will be applied to both static and time-variable gravity field, performing simulations over a limited time span and extending the resulting accuracy to a longer period by covariance propagation, assuming to have other independent solutions with the same accuracy. In particular, the time-variable analysis will be mainly dedicated to assessing the accuracy in estimating the rate of change in geodynamic processes for which a linear variation in time can be reasonably assumed.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document