scholarly journals Winter daytime warming and shift in summer monsoon increase plant cover and net CO 2 uptake in a central Tibetan alpine steppe ecosystem

Author(s):  
Felix Nieberding ◽  
Christian Wille ◽  
Yaoming Ma ◽  
Yuyang Wang ◽  
Philipp Maurischat ◽  
...  
2021 ◽  
Author(s):  
Felix Nieberding ◽  
Christian Wille ◽  
Yaoming Ma ◽  
Yuyang Wang ◽  
Philipp Maurischat ◽  
...  

2014 ◽  
Vol 34 (22) ◽  
Author(s):  
王建林 WANG Jianlin ◽  
钟志明 ZHONG Zhiming ◽  
王忠红 WANG Zhonghong ◽  
陈宝雄 CHEN Baoxiong ◽  
余成群 YU Chengqun ◽  
...  

2020 ◽  
Author(s):  
Felix Nieberding ◽  
Cristian Wille ◽  
Gerardo Fratini ◽  
Magnus O. Asmussen ◽  
Yuyang Wang ◽  
...  

Abstract. The Tibetan alpine steppe ecosystem covers an area of roughly 800,000 km2, containing up to 3.3 % soil organic carbon in the uppermost 30 cm, summing up to 1.93 PgvC for the Tibet Autonomous Region only (472,037 km2). With temperatures rising two to three times faster than the global average, these carbon stocks are at risk of loss due to enhanced soil respiration. The remote location and the harsh environmental conditions on the Tibetan Plateau (TP) make it challenging to derive accurate data on ecosystem-atmosphere exchange of carbon dioxide (CO2) and water vapor (H2O). Here, we provide the first multi-year data set of CO2 and H2O fluxes from the central Tibetan alpine steppe ecosystem, measured in situ using the eddy covariance technique. The calculated fluxes were rigorously quality checked and carefully corrected for a drift in concentration measurements and gas analyzer self heating during cold conditions. A wind field analysis was conducted to identify influences of adjacent buildings on the turbulence regime and to exclude the disturbed fluxes from subsequent computations. The presented CO2 fluxes were additionally gap filled using a standardized approach. The very low net carbon uptake across the 15-year data set highlights the special vulnerability of the Tibetan alpine steppe ecosystem to become a source of CO2 due to global warming. The data is freely available (https://www.doi.org/10.5281/zenodo.3733203, Nieberding et al., 2020b) and may help to better understand the role of the Tibetan alpine steppe in the global carbon-climate feedback.


Author(s):  
Linghao Li ◽  
Jiquan Chen ◽  
Xingguo Han ◽  
Wenhao Zhang ◽  
Changliang Shao

Geoderma ◽  
2018 ◽  
Vol 326 ◽  
pp. 201-209 ◽  
Author(s):  
Zhi-Yun Jiang ◽  
Xiao-Yan Li ◽  
Jun-Qi Wei ◽  
Hui-Ying Chen ◽  
Zong-Chao Li ◽  
...  

2019 ◽  
Vol 59 (10) ◽  
pp. 992-1003
Author(s):  
Mingsen Qin ◽  
Guoxi Shi ◽  
Jean-Pascal Miranda ◽  
Yongjun Liu ◽  
Yiming Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document