Decreasing Groundwater Supply Can Exacerbate Lake Warming and Trigger Algal Blooms

Author(s):  
Ammar Safaie ◽  
Elena Litchman ◽  
Mantha S. Phanikumar
Shore & Beach ◽  
2020 ◽  
pp. 34-43
Author(s):  
Nicole Elko ◽  
Tiffany Roberts Briggs

In partnership with the U.S. Geological Survey Coastal and Marine Hazards and Resources Program (USGS CMHRP) and the U.S. Coastal Research Program (USCRP), the American Shore and Beach Preservation Association (ASBPA) has identified coastal stakeholders’ top coastal management challenges. Informed by two annual surveys, a multiple-choice online poll was conducted in 2019 to evaluate stakeholders’ most pressing problems and needs, including those they felt most ill-equipped to deal with in their day-to-day duties and which tools they most need to address these challenges. The survey also explored where users find technical information and what is missing. From these results, USGS CMHRP, USCRP, ASBPA, and other partners aim to identify research needs that will inform appropriate investments in useful science, tools, and resources to address today’s most pressing coastal challenges. The 15-question survey yielded 134 complete responses with an 80% completion rate from coastal stakeholders such as local community representatives and their industry consultants, state and federal agency representatives, and academics. Respondents from the East, Gulf, West, and Great Lakes coasts, as well as Alaska and Hawaii, were represented. Overall, the prioritized coastal management challenges identified by the survey were: Deteriorating ecosystems leading to reduced (environmental, recreational, economic, storm buffer) functionality, Increasing storminess due to climate change (i.e. more frequent and intense impacts), Coastal flooding, both Sea level rise and associated flooding (e.g. nuisance flooding, king tides), and Combined effects of rainfall and surge on urban flooding (i.e. episodic, short-term), Chronic beach erosion (i.e. high/increasing long-term erosion rates), and Coastal water quality, including harmful algal blooms (e.g. red tide, sargassum). A careful, systematic, and interdisciplinary approach should direct efforts to identify specific research needed to tackle these challenges. A notable shift in priorities from erosion to water-related challenges was recorded from respondents with organizations initially formed for beachfront management. In addition, affiliation-specific and regional responses varied, such as Floridians concern more with harmful algal blooms than any other human and ecosystem health related challenge. The most common need for additional coastal management tools and strategies related to adaptive coastal management to maintain community resilience and continuous storm barriers (dunes, structures), as the top long-term and extreme event needs, respectively. In response to questions about missing information that agencies can provide, respondents frequently mentioned up-to-date data on coastal systems and solutions to challenges as more important than additional tools.


1996 ◽  
Vol 31 (3) ◽  
pp. 473-484 ◽  
Author(s):  
Murray N. Charlton ◽  
Robin Le Sage

Abstract A series of water samples and Secchi depth measurements were conducted in Hamilton Harbour between 1987 and 1995. The data indicate little recent improvement in the harbour generally. Detection of real improvements may require high frequency sampling and a more extensive sample grid once a cause for improvement is in place. Some measures, such as chlorophyll and Secchi depth, approach RAP initial goals sometimes during recent years, but algal blooms still occur, which prevent attainment of satisfactory average conditions. The cause of aesthetic improvements in water clarity reported in the media was investigated with sampling along an inshore-offshore transect and intense Secchi measurements in the LaSalle Park area. The data are consistent with a transient clarifying effect of zebra mussels on structures near shore. The need to reduce nutrient loads as recommended in the Remedial Action Plan continues.


1975 ◽  
Vol 10 (1) ◽  
pp. 33-41 ◽  
Author(s):  
J. Butcher ◽  
M. Boyer ◽  
CD. Fowle

Abstract Eleven small ponds, lined with polyethylene, were used to assess the consequences of applications of *DursbanR at 0.004, 0.030, 0.100 and 1.000 ppm and AbateR at 0.025 and 0.100 ppm active ingredient. The treated ponds showed a more pronounced long-term increase in pH and dissolved oxygen and decreasing total and dissolved carbon dioxide in comparison with untreated ponds. Algal blooms were of longer duration in treated ponds than in controls. Total photosynthetic productivity was higher in treated ponds but bacterial numbers did not change significantly. Photosynthetic productivity was estimated by following the changes in total carbon dioxide.


1996 ◽  
Vol 34 (1-2) ◽  
pp. 153-160 ◽  
Author(s):  
S. H. Lee ◽  
S. Vigneswaran ◽  
K. Bajracharya

Excessive phosphorus (P as orthophosphate) is one of the major pollutants in natural water that are responsible for algal blooms and eutrophication. P removal by slag is an attractive solution if the P sorption capacity of slag is significant. To design an efficient land treatment facility, basic information on the behaviour of P in the media-water environment is required. In this study, detailed column experiments were conducted to study the P transport under dynamic condition, and mathematical models were developed to describe this process. The column experiments conducted with dust and cake waste products (slag) from a steel industry as adsorbing indicated that they had higher sorption capacity of P than that of a sandy loam soil from North Sydney, Australia. P transport in the dust and cake columns exhibited characteristic S-shaped or curvilinear breakthrough curves. The simulated results from a dynamic physical nonequilibrium sorption model (DPNSM) and Freundlich isotherm constants satisfactorily matched the corresponding experimental breakthrough data. The mobility of P is restricted by the adsorbents and it is proportional to the sorption capacity of them.


2017 ◽  
Author(s):  
Andrew R. Shaughnessy ◽  
◽  
Aneesh Venkata ◽  
Elizabeth A. Hasenmueller ◽  
John J. Sloan ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document