scholarly journals Radiation belt model including semi‐annual variation and Solar driving (Sentinel)

Space Weather ◽  
2021 ◽  
Author(s):  
C. Katsavrias ◽  
S. Aminalragia‐Giamini ◽  
C. Papadimitriou ◽  
I. A. Daglis ◽  
I. Sandberg ◽  
...  
2021 ◽  
Author(s):  
Sigiava Aminalragia-Giamini ◽  
Christos Katsavrias ◽  
Constantinos Papadimitriou ◽  
Ioannis A. Daglis ◽  
Ingmar Sandberg ◽  
...  

<p>The nature of the semi-annual variation in the relativistic electron fluxes in the Earth’s outer radiation belt is investigated using Van Allen Probes (MagEIS and REPT) and GOES (EPS) data during solar cycle 24. We perform wavelet and cross-wavelet analysis in a broad energy and spatial range of electron fluxes and examine their phase relationship with the axial, equinoctial and Russell-McPherron mechanisms. It is found that the semi-annual variation in the relativistic electron fluxes exhibits pronounced power in the 0.3 – 4.2 MeV energy range at L-shells higher than 3.5 and, moreover, it exhibits an in-phase relationship with the Russell-McPherron effect indicating the former is primarily driven by the latter. Furthermore, the analysis of the past 3 solar cycles with GOES/EPS indicates that the semi-annual variation at geosynchronous orbit is evident during the descending phases and coincides with periods of a higher (lower) HSS (ICME) occurrence.</p><p>This work has received funding from the European Union's Horizon 2020 research and innovation programme “SafeSpace” under grant agreement No 870437 and from the European Space Agency under the “European Contribution to International Radiation Environment Near Earth (IRENE) Modelling System” activity under ESA Contract No 4000127282/19/NL/IB/gg.</p>


2021 ◽  
Author(s):  
Christos Katsavrias ◽  
Constantinos Papadimitriou ◽  
Sigiava Aminalragia-Giamini ◽  
Ioannis A. Daglis ◽  
Ingmar Sandberg ◽  
...  

Abstract. The nature of the semi-annual variation in the relativistic electron fluxes in the Earth’s outer radiation belt is investigated using Van Allen Probes (MagEIS and REPT) and GOES (EPS) data during solar cycle 24. We perform wavelet and cross-wavelet analysis in a broad energy and spatial range of electron fluxes and examine their phase relationship with the axial, equinoctial and Russell-McPherron mechanisms. It is found that the semi-annual variation in the relativistic electron fluxes exhibits pronounced power in the 0.3–4.2 MeV energy range at L-shells higher than 3.5 and, moreover, it exhibits an in-phase relationship with the Russell-McPherron effect indicating the former is primarily driven by the latter. Furthermore, the analysis of the past 3 solar cycles with GOES/EPS indicates that the semi-annual variation at geosynchronous orbit is evident during the descending phases and coincides with periods of a higher (lower) HSS (ICME) occurrence.


2021 ◽  
Vol 39 (3) ◽  
pp. 413-425
Author(s):  
Christos Katsavrias ◽  
Constantinos Papadimitriou ◽  
Sigiava Aminalragia-Giamini ◽  
Ioannis A. Daglis ◽  
Ingmar Sandberg ◽  
...  

Abstract. The nature of the semi-annual variation in the relativistic electron fluxes in the Earth's outer radiation belt is investigated using Van Allen Probes (MagEIS and REPT) and Geostationary Operational Environmental Satellite Energetic Particle Sensor (GOES/EPS) data during solar cycle 24. We perform wavelet and cross-wavelet analysis in a broad energy and spatial range of electron fluxes and examine their phase relationship with the axial, equinoctial and Russell–McPherron mechanisms. It is found that the semi-annual variation in the relativistic electron fluxes exhibits pronounced power in the 0.3–4.2 MeV energy range at L shells higher than 3.5, and, moreover, it exhibits an in-phase relationship with the Russell–McPherron effect, indicating the former is primarily driven by the latter. Furthermore, the analysis of the past three solar cycles with GOES/EPS indicates that the semi-annual variation at geosynchronous orbit is evident during the descending phases and coincides with periods of a higher (lower) high-speed stream (HSS) (interplanetary coronal mass ejection, ICME) occurrence.


2021 ◽  
Author(s):  
Christos Katsavrias ◽  
Sigiava Aminalragia-Giamini ◽  
Constantinos Papadimitriou ◽  
Ioannis A. Daglis ◽  
Ingmar Sandberg ◽  
...  

2014 ◽  
Vol 496 ◽  
pp. 233-247 ◽  
Author(s):  
A Goutte ◽  
F Angelier ◽  
C Bech ◽  
C Clément-Chastel ◽  
G Dell’Omo ◽  
...  

Author(s):  
Honoka TODA ◽  
Wataru MIYAKE ◽  
Takefumi MITANI ◽  
Takeshi TAKASHIMA ◽  
Yoshizumi MIYOSHI ◽  
...  

2005 ◽  
Author(s):  
Takahiro Obara ◽  
Tateo Goka
Keyword(s):  

2007 ◽  
Vol 72 (615) ◽  
pp. 81-87
Author(s):  
Kazuhiko SAKAMOTO ◽  
Saburo MURAKAWA ◽  
Michimasa SHINOHARA ◽  
Daisaku NISHINA ◽  
Yoshiyuki UEMURA

Sign in / Sign up

Export Citation Format

Share Document