Field‐scale modeling of CO 2 mineral trapping in reactive rocks: a vertically integrated approach

Author(s):  
T. J. W. Postma ◽  
K. W. Bandilla ◽  
C.A. Peters ◽  
M. A. Celia
2020 ◽  
Author(s):  
Noemi Vergopolan ◽  
Sitian Xiong ◽  
Lyndon Estes ◽  
Niko Wanders ◽  
Nathaniel W. Chaney ◽  
...  

Abstract. Soil moisture is highly variable in space, and its deficits (i.e. droughts) plays an important role in modulating crop yields and its variability across landscapes. Limited hydroclimate and yield data, however, hampers drought impact monitoring and assessment at the farmer field-scale. This study demonstrates the potential of field-scale soil moisture simulations to advance high-resolution agricultural yield prediction and drought monitoring at the smallholder farm field-scale. We present a multi-scale modeling approach that combines HydroBlocks, a physically-based hyper-resolution Land Surface Model (LSM), and machine learning. We applied HydroBlocks to simulate root zone soil moisture and soil temperature in Zambia at 3-hourly 30-m resolution. These simulations along with remotely sensed vegetation indices, meteorological conditions, and data describing the physical properties of the landscape (topography, land cover, soil properties) were combined with district-level maize data to train a random forest model (RF) to predict maize yields at the district- and field-scale (250-m) levels. Our model predicted yields with a coefficient of variation (R2) of 0.61, Mean Absolute Error (MAE) of 349 kg ha−1, and mean normalized error of 22 %. We captured maize losses due to the 2015/2016 El Niño drought at similar levels to losses reported by the Food and Agriculture Organization (FAO). Our results revealed that soil moisture is the strongest and most reliable predictor of maize yield, driving its spatial and temporal variability. Consequently, soil moisture was also the most effective indicator of drought impacts in crops when compared with precipitation, soil and air temperatures, and remotely-sensed NDVI-based drought indices. By combining field-scale root zone soil moisture estimates with observed maize yield data, this research demonstrates how field-scale modeling can help bridge the spatial scale discontinuity gap between drought monitoring and agricultural impacts.


2012 ◽  
Vol 16 (3) ◽  
pp. 156-176 ◽  
Author(s):  
Abdorreza Vaezihir ◽  
Mohammad Zare ◽  
Ezzat Raeisi ◽  
John Molson ◽  
James Barker

2007 ◽  
Vol 341 (1-2) ◽  
pp. 105-115 ◽  
Author(s):  
Jean Philippe Carlier ◽  
Cyril Kao ◽  
Irina Ginzburg
Keyword(s):  

2019 ◽  
Vol 59 (2) ◽  
pp. 940
Author(s):  
Mark Reilly ◽  
Suzanne Hurter ◽  
Zsolt Hamerli ◽  
Claudio L. de Andrade Vieira Filho ◽  
Andrew LaCroix ◽  
...  

The stratigraphy of the Surat Basin, Queensland, has historically been sub-divided by formation and unit nomenclature with a few attempts by other authors to apply sequence stratigraphy to existing formation boundaries. At a local- to field-scale, lithostratigraphy may be able to represent stratigraphy well, but at regional-scale, lithostratigraphic units are likely to be diachronous. To date, this lithology-driven framework does not accurately reflect time relationships in the sub-surface. An entirely new integrated methodological approach, involving well tied seismic data and sequence stratigraphic well-to-well correlations compared with published zircon age dates, has been applied to hundreds of deep wells and shallower coal seam gas wells. This method sub-divides the Surat Basin stratigraphy into defendable 2nd order to 3rd order sequence stratigraphic cycles and has required the use of an alpha-numeric sequence stratigraphic nomenclature to adequately and systematically label potential time equivalent surfaces basin-wide. Correlation of wells is the first step in building models of aquifers and coal seam gas fields for numerical simulation of fluid flow, which is necessary for responsible resource management. Lithostratigraphic correlations will overestimate the extent and hydraulic connectedness of the strata of interest. The result may be fluid flow models that do not represent a realistic pressure footprint of the flow. The present sequence stratigraphic method more accurately reflects the disconnectedness of sub-surface coals and sandstones (aquifers) on a field-to-field scale, adjacent field-scale, and basin-wide scale. It forms the basis for improved and more representative modelling of the sub-surface.


2012 ◽  
Vol 89 ◽  
pp. 51-61 ◽  
Author(s):  
Jonathan P. Resop ◽  
David H. Fleisher ◽  
Qingguo Wang ◽  
Dennis J. Timlin ◽  
Vangimalla R. Reddy

Sign in / Sign up

Export Citation Format

Share Document