scholarly journals Correction to: “Global warming: Evidence for asymmetric diurnal temperature change” by Karl et al.

1992 ◽  
Vol 19 (2) ◽  
pp. 219-219
Author(s):  
Karl
1991 ◽  
Vol 18 (12) ◽  
pp. 2253-2256 ◽  
Author(s):  
Thomas R. Karl ◽  
George Kukla ◽  
Vyacheslav N. Razuvayev ◽  
Michael J. Changery ◽  
Robert G. Quayle ◽  
...  

2020 ◽  
Author(s):  
Martin B. Stolpe ◽  
Kevin Cowtan ◽  
Iselin Medhaug ◽  
Reto Knutti

Abstract Global mean temperature change simulated by climate models deviates from the observed temperature increase during decadal-scale periods in the past. In particular, warming during the ‘global warming hiatus’ in the early twenty-first century appears overestimated in CMIP5 and CMIP6 multi-model means. We examine the role of equatorial Pacific variability in these divergences since 1950 by comparing 18 studies that quantify the Pacific contribution to the ‘hiatus’ and earlier periods and by investigating the reasons for differing results. During the ‘global warming hiatus’ from 1992 to 2012, the estimated contributions differ by a factor of five, with multiple linear regression approaches generally indicating a smaller contribution of Pacific variability to global temperature than climate model experiments where the simulated tropical Pacific sea surface temperature (SST) or wind stress anomalies are nudged towards observations. These so-called pacemaker experiments suggest that the ‘hiatus’ is fully explained and possibly over-explained by Pacific variability. Most of the spread across the studies can be attributed to two factors: neglecting the forced signal in tropical Pacific SST, which is often the case in multiple regression studies but not in pacemaker experiments, underestimates the Pacific contribution to global temperature change by a factor of two during the ‘hiatus’; the sensitivity with which the global temperature responds to Pacific variability varies by a factor of two between models on a decadal time scale, questioning the robustness of single model pacemaker experiments. Once we have accounted for these factors, the CMIP5 mean warming adjusted for Pacific variability reproduces the observed annual global mean temperature closely, with a correlation coefficient of 0.985 from 1950 to 2018. The CMIP6 ensemble performs less favourably but improves if the models with the highest transient climate response are omitted from the ensemble mean.


Atmosphere ◽  
2016 ◽  
Vol 7 (9) ◽  
pp. 114 ◽  
Author(s):  
Wenchao Chu ◽  
Sijing Qiu ◽  
Jianhua Xu

2020 ◽  
Author(s):  
Haoming Yu ◽  
Yunting Fang ◽  
Ronghua Kang

<p>N<sub>2</sub>O and N<sub>2</sub> Emissions from soil in terrestrial ecosystems is a crucial component of the global nitrogen (N) cycle. The response of these two gases emissions from forest soil to temperature change and its underlying mechanisms are essential for predicting N cycle to global warming. Despite the warming-induced effects on soil N cycle is considered to be positive in general, our understanding of temperature sensitivity (Q<sub>10</sub>) of N<sub>2</sub>O and N<sub>2</sub> emissions is rather limited. We quantified the Q<sub>10</sub> of N<sub>2</sub>O and N<sub>2</sub> emissions in forest soils and explored their major driving factors by conducting an incubation experiment using <sup>15</sup>N tracer (Na<sup>15</sup>NO<sub>3</sub>) with soil samples from nineteen forest sites from temperate to tropical zones. The environmental conditions largely varied: mean annual temperature (MAT) ranging from -5.4 to 21.5<sup>o</sup>C and mean annual precipitation (MAP) ranging from 300 to 2449 mm. The soil pH varied between 3.62 to 6.38. We incubated soil samples under an anaerobic condition with temperature from 5 to 35<sup>o</sup>C with an interval of 5<sup>o</sup>C for 12 or 24 hours, respectively. Soil temperature strongly affected the production of N<sub>2</sub>O and N<sub>2</sub>. N<sub>2</sub>O and N<sub>2</sub> production rates showed a positive exponential relation with incubate time and temperature for all forest soils. Our results showed that the Q<sub>10</sub> values ranged from 1.31 to 2.98 for N<sub>2</sub>O emission and 1.69 to 3.83 for N<sub>2</sub> emission, indicating a generally positive feedback of N<sub>2</sub>O and N<sub>2</sub> production to warming. Higher Q<sub>10</sub> values for N<sub>2</sub> than N<sub>2</sub>O implies that N<sub>2</sub> emission is more sensitive to temperature increase. The N<sub>2</sub>O/(N<sub>2</sub>O+N<sub>2</sub>) decreased with increasing temperature in fifteen of nineteen forest soils, suggesting that warming accelerates N<sub>2</sub> emission. Strong spatial variation in Q<sub>10</sub> were also observed, with tropical forest soils exhibiting high Q<sub>10</sub> values and relatively low Q<sub>10</sub> in temperate forest soils. This variation is attributed to the inherent differences in N biogeochemical cycling behavior between the microbial communities among sites. Despite soil temperature primarily controls the N<sub>2</sub>O and N<sub>2</sub> emissions, we  explored the effects of other factors such as pH, C/N, DOC and related functional genes. In addition, we partitioned N<sub>2</sub>O and N<sub>2</sub> emissions to different microbial processes (e.g., denitrification, co-denitrification and anammox). The results indicated that denitrification was the main pathway of N<sub>2</sub>O and N<sub>2</sub> production under anaerobic environment and the contribution increased as temperature rise.</p><p>Key words: Temperature sensitivity, N<sub>2</sub>O, N<sub>2</sub>, Forest soil, Nitrogen cycle, Global warming, Denitrification</p>


Sign in / Sign up

Export Citation Format

Share Document