scholarly journals An analysis of the structure and forcing of the equatorial semiannual oscillation in zonal wind

1998 ◽  
Vol 103 (D2) ◽  
pp. 1759-1774 ◽  
Author(s):  
Eric A. Ray ◽  
M. Joan Alexander ◽  
James R. Holton
2020 ◽  
Author(s):  
Yoshio Kawatani ◽  
Toshihiko Hirooka ◽  
Kevin Hamilton ◽  
Anne K. Smith ◽  
Masatomo Fujiwara

Abstract. This paper reports on a project to compare the representation of the semiannual oscillation (SAO) in the equatorial stratosphere and lower mesosphere among six major global atmospheric reanalysis datasets and with recent satellite SABER and MLS observations. All reanalyses have a good representation of the quasi-biennial oscillation (QBO) in the equatorial lower and middle stratosphere and each displays a clear SAO centered near the stratopause. However, the differences among reanalyses are much more substantial in the SAO region than in the QBO dominated region. The degree of disagreement among the reanalyses is characterized by the standard deviation (SD) of the monthly-mean zonal wind and temperature; this depends on latitude, longitude, height, and time. The zonal wind SD displays a prominent equatorial maximum that increases with height, while the temperature SD is minimum near the equator and largest in the polar regions. Along the equator the zonal wind SD is smallest around the longitude of Singapore where consistently high-quality near-equatorial radiosonde observations are available. Interestingly the near-Singapore minimum in SD is evident to at least ~ 3 hPa, i.e. considerably higher than the usual ~ 10 hPa ceiling for in situ radiosonde observations. Our measurement of the agreement among the reanalyses shows systematic improvement over the period considered (1980–2016), up to near the stratopause. Characteristics of the SAO at 1 hPa, such as its detailed time variation and the displacement off the equator of the zonal wind SAO amplitude maximum, differ significantly among the reanalyses. Disagreement among the reanalyses becomes still greater above 1 hPa. One of the reanalyses in our study also has a version produced without assimilating satellite observations and a comparison of the SAO in these two versions demonstrates the very great importance of satellite derived temperatures in the realistic analysis of the tropical upper stratospheric circulation.


2017 ◽  
Vol 74 (8) ◽  
pp. 2413-2425 ◽  
Author(s):  
Anne K. Smith ◽  
Rolando R. Garcia ◽  
Andrew C. Moss ◽  
Nicholas J. Mitchell

Abstract The dominant mode of seasonal variability in the global tropical upper-stratosphere and mesosphere zonal wind is the semiannual oscillation (SAO). However, it is notoriously difficult to measure winds at these heights from satellite or ground-based remote sensing. Here, the balance wind relationship is used to derive monthly and zonally averaged zonal winds in the tropics from satellite retrievals of geopotential height. Data from the Aura Microwave Limb Sounder (MLS) cover about 12.5 yr, and those from the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) cover almost 15 yr. The derived winds agree with direct wind observations below 10 hPa and above 80 km; there are no direct wind observations for validation in the intervening layers of the middle atmosphere. The derived winds show the following prominent peaks associated with the SAO: easterly maxima near the solstices at 1.0 hPa, westerly maxima near the equinoxes at 0.1 hPa, and easterly maxima near the equinoxes at 0.01 hPa. The magnitudes of these three wind maxima are stronger during the first cycle (January at 1.0 hPa and March at 0.1 and 0.01 hPa). The month and pressure level of the wind maxima shift depending on the phase of the quasi-biennial oscillation (QBO) at 10 hPa. During easterly QBO, the westerly maxima are shifted upward, are about 10 m s−1 stronger, and occur approximately 1 month later than those during the westerly QBO phase.


2020 ◽  
Vol 20 (14) ◽  
pp. 9115-9133
Author(s):  
Yoshio Kawatani ◽  
Toshihiko Hirooka ◽  
Kevin Hamilton ◽  
Anne K. Smith ◽  
Masatomo Fujiwara

Abstract. This paper reports on a project to compare the representation of the semiannual oscillation (SAO) in the equatorial stratosphere and lower mesosphere within six major global atmospheric reanalysis datasets and with recent satellite Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) and Microwave Limb Sounder (MLS) observations. All reanalyses have a good representation of the quasi-biennial oscillation (QBO) in the equatorial lower and middle stratosphere and each displays a clear SAO centered near the stratopause. However, the differences among reanalyses are much more substantial in the SAO region than in the QBO-dominated region. The degree of disagreement among the reanalyses is characterized by the standard deviation (SD) of the monthly mean zonal wind and temperature; this depends on latitude, longitude, height, and time. The zonal wind SD displays a prominent equatorial maximum that increases with height, while the temperature SD reaches a minimum near the Equator and is largest in the polar regions. Along the Equator, the zonal wind SD is smallest around the longitude of Singapore, where consistently high-quality near-equatorial radiosonde observations are available. Interestingly, the near-Singapore minimum in SD is evident to at least ∼3 hPa, i.e., considerably higher than the usual ∼10 hPa ceiling for in situ radiosonde observations. Our measurement of the agreement among the reanalyses shows systematic improvement over the period considered (1980–2016), up to near the stratopause. Characteristics of the SAO at 1 hPa, such as its detailed time variation and the displacement off the Equator of the zonal wind SAO amplitude maximum, differ significantly among the reanalyses. Disagreement among the reanalyses becomes still greater above 1 hPa. One of the reanalyses in our study also has a version produced without assimilating satellite observations, and a comparison of the SAO in these two versions demonstrates the very great importance of satellite-derived temperatures in the realistic analysis of the tropical upper stratospheric circulation.


1998 ◽  
Vol 103 (D18) ◽  
pp. 23103-23111 ◽  
Author(s):  
Hiroyuki Enomoto ◽  
Hideaki Motoyama ◽  
Takayuki Shiraiwa ◽  
Takashi Saito ◽  
Takao Kameda ◽  
...  

2017 ◽  
Vol 34 (3) ◽  
pp. 657-667 ◽  
Author(s):  
Z. Sheng ◽  
J. W. Li ◽  
Y. Jiang ◽  
S. D. Zhou ◽  
W. L. Shi

AbstractStratospheric winds play a significant role in middle atmosphere dynamics, model research, and carrier rocket experiments. For the first time, 65 sets of rocket sounding experiments conducted at Jiuquan (41.1°N, 100.2°E), China, from 1967 to 2004 are presented to study horizontal wind fields in the stratosphere. At a fixed height, wind speed obeys the lognormal distribution. Seasonal mean winds are westerly in winter and easterly in summer. In spring and autumn, zonal wind directions change from the upper to the lower stratosphere. The monthly zonal mean winds have an annual cycle period with large amplitudes at high altitudes. The correlation coefficients for zonal winds between observations and the Horizontal Wind Model (HWM) with all datasets are 0.7. The MERRA reanalysis is in good agreement with rocketsonde data according to the zonal winds comparison with a coefficient of 0.98. The sudden stratospheric warming is an important contribution to biases in the HWM, because it changes the zonal wind direction in the midlatitudes. Both the model and the reanalysis show dramatic meridional wind differences with the observation data.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Ruben Gonçalves ◽  
Pedro Machado ◽  
Thomas Widemann ◽  
Francisco Brasil ◽  
José Ribeiro

At Venus’s cloud top, the circulation is dominated by the superroration, where zonal wind speed peaks at ∼100 ms−1, in the low-to-middle latitudes. The constraining of zonal and meridional circulations is essential to understanding the mechanisms driving the superrotation of Venus’s atmosphere, which are still poorly understood. We present new Doppler velocimetry measurements of horizontal wind velocities at Venus’s cloud top, around 70 km altitude. These results were based on March 2015 observations at the Canada–France–Hawaii Telescope (CFHT, Mauna Kea, Hawaii), using ESPaDOnS. The Doppler velocimetry method used has already successfully provided zonal and meridional results in previous works led by P. Machado and R. Gonçalves, proving to be a good reference ground-based technique in the study of the dynamics of Venus’s atmosphere. These observations were carried out between 27 and 29 March 2015, using the Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) which provides simultaneous visible-near IR spectra from 370 to 1050 nm, with a spectral resolution of 81000 allowing wind field characterization in the scattered Franuhofer solar lines by Venus’s cloud top on the dayside. The zonal velocities are consistent with previous results while also showing evidence of spatial variability, along planetocentric latitude and longitude (local-time). The meridional wind circulation presents a notably constant latitudinal structure with null velocities at lower latitudes, below 10∘ N–S, and peak velocities of ∼30 ms−1, centered around 35∘ N–S. The uncertainty of the meridional wind results from ground observations is of the same order as the uncertainty of meridional wind retrieved by space-based observations using cloud-tracking, as also shown by previous work led by R. Gonçalves and published in 2020. These March 2015 measurements present a unique and valuable contribution to the study of horizontal wind at the cloud top, from a period when Doppler velocimetry was the only available method to do so, since no space mission was orbiting Venus between Venus Express ending in January 2015 and Akatsuki’s orbit insertion in December 2015. These results from new observations provide (1) constraints on zonal wind temporal and spatial variability (latitude and local time), (2) constraints on the meridional wind latitudinal profile, (3) additional evidence of zonal and meridional wind stability for the period between 2011 and 2015 (along previous Doppler results) (4) further evidence of the consistency and robustness of our Doppler velocimetry method.


Sign in / Sign up

Export Citation Format

Share Document