scholarly journals A Wind Study of Venus’s Cloud Top: New Doppler Velocimetry Observations

Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Ruben Gonçalves ◽  
Pedro Machado ◽  
Thomas Widemann ◽  
Francisco Brasil ◽  
José Ribeiro

At Venus’s cloud top, the circulation is dominated by the superroration, where zonal wind speed peaks at ∼100 ms−1, in the low-to-middle latitudes. The constraining of zonal and meridional circulations is essential to understanding the mechanisms driving the superrotation of Venus’s atmosphere, which are still poorly understood. We present new Doppler velocimetry measurements of horizontal wind velocities at Venus’s cloud top, around 70 km altitude. These results were based on March 2015 observations at the Canada–France–Hawaii Telescope (CFHT, Mauna Kea, Hawaii), using ESPaDOnS. The Doppler velocimetry method used has already successfully provided zonal and meridional results in previous works led by P. Machado and R. Gonçalves, proving to be a good reference ground-based technique in the study of the dynamics of Venus’s atmosphere. These observations were carried out between 27 and 29 March 2015, using the Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) which provides simultaneous visible-near IR spectra from 370 to 1050 nm, with a spectral resolution of 81000 allowing wind field characterization in the scattered Franuhofer solar lines by Venus’s cloud top on the dayside. The zonal velocities are consistent with previous results while also showing evidence of spatial variability, along planetocentric latitude and longitude (local-time). The meridional wind circulation presents a notably constant latitudinal structure with null velocities at lower latitudes, below 10∘ N–S, and peak velocities of ∼30 ms−1, centered around 35∘ N–S. The uncertainty of the meridional wind results from ground observations is of the same order as the uncertainty of meridional wind retrieved by space-based observations using cloud-tracking, as also shown by previous work led by R. Gonçalves and published in 2020. These March 2015 measurements present a unique and valuable contribution to the study of horizontal wind at the cloud top, from a period when Doppler velocimetry was the only available method to do so, since no space mission was orbiting Venus between Venus Express ending in January 2015 and Akatsuki’s orbit insertion in December 2015. These results from new observations provide (1) constraints on zonal wind temporal and spatial variability (latitude and local time), (2) constraints on the meridional wind latitudinal profile, (3) additional evidence of zonal and meridional wind stability for the period between 2011 and 2015 (along previous Doppler results) (4) further evidence of the consistency and robustness of our Doppler velocimetry method.

2017 ◽  
Vol 34 (3) ◽  
pp. 657-667 ◽  
Author(s):  
Z. Sheng ◽  
J. W. Li ◽  
Y. Jiang ◽  
S. D. Zhou ◽  
W. L. Shi

AbstractStratospheric winds play a significant role in middle atmosphere dynamics, model research, and carrier rocket experiments. For the first time, 65 sets of rocket sounding experiments conducted at Jiuquan (41.1°N, 100.2°E), China, from 1967 to 2004 are presented to study horizontal wind fields in the stratosphere. At a fixed height, wind speed obeys the lognormal distribution. Seasonal mean winds are westerly in winter and easterly in summer. In spring and autumn, zonal wind directions change from the upper to the lower stratosphere. The monthly zonal mean winds have an annual cycle period with large amplitudes at high altitudes. The correlation coefficients for zonal winds between observations and the Horizontal Wind Model (HWM) with all datasets are 0.7. The MERRA reanalysis is in good agreement with rocketsonde data according to the zonal winds comparison with a coefficient of 0.98. The sudden stratospheric warming is an important contribution to biases in the HWM, because it changes the zonal wind direction in the midlatitudes. Both the model and the reanalysis show dramatic meridional wind differences with the observation data.


2017 ◽  
Vol 35 (2) ◽  
pp. 333-344 ◽  
Author(s):  
Fasil Tesema ◽  
Rafael Mesquita ◽  
John Meriwether ◽  
Baylie Damtie ◽  
Melessew Nigussie ◽  
...  

Abstract. Measurements of equatorial thermospheric winds, temperatures, and 630 nm relative intensities were obtained using an imaging Fabry–Perot interferometer (FPI), which was recently deployed at Bahir Dar University in Ethiopia (11.6° N, 37.4° E, 3.7° N magnetic). The results obtained in this study cover 6 months (53 nights of useable data) between November 2015 and April 2016. The monthly-averaged values, which include local winter and equinox seasons, show the magnitude of the maximum monthly-averaged zonal wind is typically within the range of 70 to 90 ms−1 and is eastward between 19:00 and 21:00 LT. Compared to prior studies of the equatorial thermospheric wind for this local time period, the magnitude is considerably weaker as compared to the maximum zonal wind speed observed in the Peruvian sector but comparable to Brazilian FPI results. During the early evening, the meridional wind speeds are 30 to 50 ms−1 poleward during the winter months and 10 to 25 ms−1 equatorward in the equinox months. The direction of the poleward wind during the winter months is believed to be mainly caused by the existence of the interhemispheric wind flow from the summer to winter hemispheres. An equatorial wind surge is observed later in the evening and is shifted to later local times during the winter months and to earlier local times during the equinox months. Significant night-to-night variations are also observed in the maximum speed of both zonal and meridional winds. The temperature observations show the midnight temperature maximum (MTM) to be generally present between 00:30 and 02:00 LT. The amplitude of the MTM was  ∼  110 K in January 2016 with values smaller than this in the other months. The local time difference between the appearance of the MTM and a pre-midnight equatorial wind was generally 60 to 180 min. A meridional wind reversal was also observed after the appearance of the MTM (after 02:00 LT). Climatological models, HWM14 and MSIS-00, were compared to the observations and the HWM14 model generally predicted the zonal wind observations well with the exception of higher model values by 25 ms−1 in the winter months. The HWM14 model meridional wind showed generally good agreement with the observations. Finally, the MSIS-00 model overestimated the temperature by 50 to 75 K during the early evening hours of local winter months. Otherwise, the agreement was generally good, although, in line with prior studies, the model failed to reproduce the MTM peak for any of the 6 months compared with the FPI data.


2008 ◽  
Vol 26 (3) ◽  
pp. 447-466 ◽  
Author(s):  
J. Meriwether ◽  
M. Faivre ◽  
C. Fesen ◽  
P. Sherwood ◽  
O. Veliz

Abstract. Optical observations of thermospheric winds and temperatures determined with high resolution measurements of Doppler shifts and Doppler widths of the OI 630-nm equatorial nightglow emission have been made with improved accuracy at Arequipa, Peru (16.4° S, 71.4° W) with an imaging Fabry-Perot interferometer. An observing procedure previously used at Arecibo Observatory was applied to achieve increased spatial and temporal sampling of the thermospheric wind and temperature with the selection of eight azimuthal directions, equally spaced from 0 to 360°, at a zenith angle of 60°. By assuming the equivalence of longitude and local time, the data obtained using this technique is analyzed to determine the mean neutral wind speeds and mean horizontal gradients of the wind field in the zonal and meridional directions. The new temperature measurements obtained with the improved instrumental accuracy clearly show the midnight temperature maximum (MTM) peak with amplitudes of 25 to 200 K in all directions observed for most nights. The horizontal wind field maps calculated from the mean winds and gradients show the MTM peak is always preceded by an equatorward wind surge lasting 1–2 h. The results also show for winter events a meridional wind abatement seen after the MTM peak. On one occasion, near the September equinox, a reversal was observed during the poleward transit of the MTM over Arequipa. Analysis inferring vertical winds from the observed convergence yielded inconsistent results, calling into question the validity of this calculation for the MTM structure at equatorial latitudes during solar minimum. Comparison of the observations with the predictions of the NCAR general circulation model indicates that the model fails to reproduce the observed amplitude by a factor of 5 or more. This is attributed in part to the lack of adequate spatial resolution in the model as the MTM phenomenon takes place within a scale of 300–500 km and ~45 min in local time. The model shortcoming is also attributed in part to the need for the model to include a hydrodynamical mechanism to describe the merging of the zonal wind with the meridional tidal winds that converge onto the geographical equator. Finally, a conclusion of this work is that the MTM compressional heating takes place along the perimeter of the pressure bulge rather than within the bulge, an issue previously not appreciated.


2014 ◽  
Vol 7 (7) ◽  
pp. 7717-7752
Author(s):  
R. Rüfenacht ◽  
A. Murk ◽  
N. Kämpfer ◽  
P. Eriksson ◽  
S. A. Buehler

Abstract. WIRA is a ground-based microwave Doppler spectro radiometer specifically designed for the measurement of profiles of horizontal wind in the upper stratosphere and lower mesosphere region where no other continuously running measurement technique exists. A proof of principle has been delivered in a previous publication. Since a technical upgrade which improved the signal to noise ratio by a factor of 2.4 the full horizontal wind field comprising zonal and meridional wind profiles is continuously measured. A completely new retrieval based on optimal estimation has been set up. Its characteristics are detailed in the present paper. Since the start of the routine operation of the first prototype in September 2010, WIRA has been measuring at four different locations at polar, mid and tropical latitudes for time periods between 5.5 and 11 months. A comparison between the data series from WIRA and ECMWF model data revealed agreement within 10% in the stratospheric zonal wind. The meridional wind profiles agree within their error bars over the entire sensitive altitude range of WIRA. However, significant differences in the mesospheric zonal wind speed of up to 40% have been found.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1284
Author(s):  
Zhao-Yu Chen ◽  
Yen-Hsyang Chu ◽  
Ching-Lun Su

Concurrent measurements of three-dimensional wind velocities made with three co-located wind profilers operated at frequencies of 52 MHz, 449 MHz, and 1.29 GHz for the period 12–16 September 2017 are compared for the first time in this study. The velocity–azimuth display (VAD) method is employed to estimate the wind velocities. The result shows that, in the absence of precipitation, the root mean square difference (RMSD) in the horizontal wind speed velocities U and wind directions D between different pairs of wind profilers are, respectively, in the range of 0.94–0.99 ms−1 and 7.7–8.3°, and those of zonal wind component u and meridional wind component v are in the respective ranges of 0.91–1.02 ms−1 and 1.1–1.24 ms−1. However, the RMSDs between wind profilers and rawinsonde are in the range of 2.89–3.26 ms−1 for horizontal wind speed velocity and 11.17–14.48° for the wind direction, which are around 2–3 factors greater than those between the wind profilers on average. In addition to the RMSDs, MDs between wind profilers and radiosonde are around one order of magnitude larger than those between wind profilers. These results show that the RMSDs, MDs, and Stdds between radars are highly consistent with each other, and they are much smaller than those between radar and rawinsonde. This therefore suggests that the wind profiler-measured horizontal wind velocities are much more reliable, precise, and accurate than the rawinsonde measurement.


2015 ◽  
Vol 15 (4) ◽  
pp. 2203-2213 ◽  
Author(s):  
M. Kozubek ◽  
P. Krizan ◽  
J. Lastovicka

Abstract. The Brewer–Dobson circulation (mainly meridional circulation) is very important for stratospheric ozone dynamics and thus for the overall state of the stratosphere. There are some indications that the meridional circulation in the stratosphere could be longitudinally dependent, which would have an impact on the ozone distribution. Therefore, we analyse here the meridional component of the stratospheric wind at northern middle latitudes to study its longitudinal dependence. The analysis is based on the NCEP/NCAR-1 (National Centers for Environmental Prediction and the National Center for Atmospheric Research), MERRA (Modern Era-Retrospective Analysis) and ERA-Interim (European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis Interim) reanalysis data. The well-developed two-core structure of strong but opposite meridional winds, one in each hemisphere at 10 hPa at higher northern middle latitudes, and a less pronounced five-core structure at 100 hPa are identified. In the central areas of the two-core structure the meridional and zonal wind magnitudes are comparable. The two-core structure at 10 hPa is almost identical for all three different reanalysis data sets in spite of the different time periods covered. The two-core structure is not associated with tides. However, the two-core structure at the 10 hPa level is related to the Aleutian pressure high at 10 hPa. Zonal wind, temperature and the ozone mixing ratio at 10 hPa also exhibit the effect of the Aleutian high, which thus affects all parameters of the Northern Hemisphere middle stratosphere. Long-term trends in the meridional wind in the "core" areas are significant at the 99% level. Trends of meridional winds are negative during the period of ozone depletion development (1970–1995), while they are positive after the ozone trend turnaround (1996–2012). Meridional wind trends are independent of the sudden stratospheric warming (SSW) occurrence and the quasi-biennial oscillation (QBO) phase. The influence of the 11-year solar cycle on stratospheric winds has been identified only during the west phase of QBO. The well-developed two-core structure in the meridional wind illustrates the limitations of application of the zonal mean concept in studying stratospheric circulation.


2013 ◽  
Vol 31 (8) ◽  
pp. 1365-1378 ◽  
Author(s):  
W. Yuan ◽  
X. Liu ◽  
J. Xu ◽  
Q. Zhou ◽  
G. Jiang ◽  
...  

Abstract. We analyzed the nighttime horizontal neutral winds in the middle atmosphere (~ 87 and ~ 98 km) and thermosphere (~ 250 km) derived from a Fabry–Perot interferometer (FPI), which was installed at Xinglong station (40.2° N, 117.4° E) in central China. The wind data covered the period from April 2010 to July 2012. We studied the annual, semiannual and terannual variations of the midnight winds at ~ 87 km, ~ 98 km and ~ 250 km for the first time and compared them with Horizontal Wind Model 2007 (HWM07). Our results show the following: (1) at ~ 87 km, both the observed and model zonal winds have similar phases in the annual and semiannual variations. However, the HWM07 amplitudes are much larger. (2) At ~ 98 km, the model shows strong eastward wind in the summer solstice, resulting in a large annual variation, while the observed strongest component is semiannual. The observation and model midnight meridional winds agree well. Both are equatorward throughout the year and have small amplitudes in the annual and semiannual variations. (3) There are large discrepancies between the observed and HWM07 winds at ~ 250 km. This discrepancy is largely due to the strong semiannual zonal wind in the model and the phase difference in the annual variation of the meridional wind. The FPI annual variation coincides with the results from Arecibo, which has similar geomagnetic latitude as Xinglong station. In General, the consistency of FPI winds with model winds is better at ~ 87 and ~ 98 km than that at ~ 250 km. We also studied the seasonally and monthly averaged nighttime winds. The most salient features include the following: (1) the seasonally averaged zonal winds at ~ 87 and ~ 98 km typically have small variations throughout the night. (2) The model zonal and meridional nighttime wind variations are typically much larger than those of observations at ~ 87 km and ~ 98 km. (3) At ~ 250 km, model zonal wind compares well with the observation in the winter. For spring and autumn, the model wind is more eastward before ~ 03:00 LT but more westward after. The observed nighttime zonal and meridional winds on average are close to zero in the summer and autumn, which indicates a lack of strong stable tides. The consistency of FPI zonal wind with model wind at ~ 250 km is better than the meridional wind.


2014 ◽  
Vol 7 (12) ◽  
pp. 4491-4505 ◽  
Author(s):  
R. Rüfenacht ◽  
A. Murk ◽  
N. Kämpfer ◽  
P. Eriksson ◽  
S. A. Buehler

Abstract. WIRA is a ground-based microwave Doppler spectroradiometer specifically designed for the measurement of profiles of horizontal wind in the upper stratosphere and lower mesosphere region where no other continuously running measurement technique exists. A proof of principle has been delivered in a previous publication. A technical upgrade including a new high-frequency amplifier and sideband filter has improved the signal to noise ratio by a factor of 2.4. Since this upgrade the full horizontal wind field comprising zonal and meridional wind profiles is continuously measured. A completely new retrieval based on optimal estimation has been set up. Its characteristics are detailed in the present paper. Since the start of the routine operation of the first prototype in September 2010, WIRA has been measuring at four different locations at polar, mid- and tropical latitudes (67°22' N/26°38' E, 46°57' N/7°26' E, 43°56' N/5°43' E and 21°04' S/55°23' E) for time periods between 5.5 and 11 months. The data presented in this paper are daily average wind profiles with typical uncertainties and resolutions of 10 to 20 m s−1 and 10 to 16 km, respectively. A comparison between the data series from WIRA and European Centre for Medium-Range Weather Forecasts (ECMWF) model data revealed agreement within 10% in the stratospheric zonal wind. The meridional wind profiles agree within their error bars over the entire sensitive altitude range of WIRA. However, significant differences in the mesospheric zonal wind speed of up to 50% have been found.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 186
Author(s):  
Dmitry A. Gorinov ◽  
Ludmila V. Zasova ◽  
Igor V. Khatuntsev ◽  
Marina V. Patsaeva ◽  
Alexander V. Turin

The horizontal wind velocity vectors at the lower cloud layer were retrieved by tracking the displacement of cloud features using the 1.74 µm images of the full Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M) dataset. This layer was found to be in a superrotation mode with a westward mean speed of 60–63 m s−1 in the latitude range of 0–60° S, with a 1–5 m s−1 westward deceleration across the nightside. Meridional motion is significantly weaker, at 0–2 m s−1; it is equatorward at latitudes higher than 20° S, and changes its direction to poleward in the equatorial region with a simultaneous increase of wind speed. It was assumed that higher levels of the atmosphere are traced in the equatorial region and a fragment of the poleward branch of the direct lower cloud Hadley cell is observed. The fragment of the equatorward branch reveals itself in the middle latitudes. A diurnal variation of the meridional wind speed was found, as east of 21 h local time, the direction changes from equatorward to poleward in latitudes lower than 20° S. Significant correlation with surface topography was not found, except for a slight decrease of zonal wind speed, which was connected to the volcanic area of Imdr Regio.


2015 ◽  
Vol 8 (9) ◽  
pp. 3893-3901 ◽  
Author(s):  
S. Satheesh Kumar ◽  
T. Narayana Rao ◽  
A. Taori

Abstract. The paper explores the possibility of implementing an advanced photogrammetric technique, generally employed for satellite measurements, on airglow imager, a ground-based remote sensing instrument primarily used for upper atmospheric studies, measurements of clouds for the extraction of cloud motion vectors (CMVs). The major steps involved in the algorithm remain the same, including image processing for better visualization of target elements and noise removal, identification of target cloud, setting a proper search window for target cloud tracking, estimation of cloud height, and employing 2-D cross-correlation to estimate the CMVs. Nevertheless, the implementation strategy at each step differs from that of satellite, mainly to suit airglow imager measurements. For instance, climatology of horizontal winds at the measured site has been used to fix the search window for target cloud tracking. The cloud height is estimated very accurately, as required by the algorithm, using simultaneous collocated lidar measurements. High-resolution, both in space and time (4 min), cloud imageries are employed to minimize the errors in retrieved CMVs. The derived winds are evaluated against MST radar-derived winds by considering it as a reference. A very good correspondence is seen between these two wind measurements, both showing similar wind variation. The agreement is also found to be good in both the zonal and meridional wind velocities with RMSEs < 2.4 m s−1. Finally, the strengths and limitations of the algorithm are discussed, with possible solutions, wherever required.


Sign in / Sign up

Export Citation Format

Share Document