The Late Pleistocene and Holocene Glacial and Climate History of the Antarctic Peninsula Region as Documented by the Land and Lake Sediment Records- A Review

Author(s):  
Christian Hjort ◽  
Ólafur Ingólfsson ◽  
Michael J. Bentley ◽  
Svante Björck
1995 ◽  
Vol 69 (1) ◽  
pp. 66-84 ◽  
Author(s):  
Simon R. A. Kelly

New discoveries of trigonioid bivalves are documented from three areas in the Antartic Peninsula: the Fossil Bluff Group of Alexander Island, the Latady Formation of the Orville Coast, and the Byers Group of Livingston Island, South Shetland Islands. Eleven taxa are described, representing six genera or subgenera. The faunas are characterized by genera including Vaugonia (Vaugonia), the first Early Jurassic trigonioid recognized on the continent; Vaugonia (V.) and V. (Orthotrigonia?) in the Late Jurassic; and Iotrigonia (Iotrigonia), Myophorella (Scaphogonia), and Pterotrigonia (Pterotrigonia), which span the Jurassic–Cretaceous boundary, reaching the Berriasian stage. The following species are new: Pterotrigonia (P.) cramei n. sp., Pterotrigonia (P.) thomsoni n. sp., Vaugonia (V.) orvillensis n. sp., and V. (Orthotrigonia?) quiltyi n. sp. The faunas show affinities with those of New Zealand and southern Africa. Trigonioids characterize the shallower marine biofacies in the Jurassic of the Antarctic and reflect the principal shallowing events in the history of the region.


Boreas ◽  
2008 ◽  
Vol 21 (3) ◽  
pp. 209-222 ◽  
Author(s):  
ÓLAFUR INGÓLFSSON ◽  
CHRISTIAN HJORT ◽  
SVANTE BJÖRCK ◽  
R. I. LEWIS SMITH

1984 ◽  
Vol 30 (106) ◽  
pp. 289-295 ◽  
Author(s):  
John M. Reynolds ◽  
J. G. Paren

AbstractGeoresistivity soundings have been carried out at four sites in the Antarctic Peninsula. The objective of the work was to investigate the electrical behaviour of ice from an area where substantial melting occurs in summer and from contrasting thermal regimes. Electrical measurements made at three sites along a flow line within George VI Ice Shelf reveal that:(a)the resistivity of deep ice is similar to that of other Antarctic ice shelves,(b)the resistivity of the ice-shelf surface, which is affected by the percolation and refreezing of melt water, is similar to that of deep ice and hence the ice is polar in character.A compilation of published resistivities of deep ice from polar regions shows that the range of resistivities is very narrow (0.4 –2.0) x 105Ω m between –2 and – 29°C, irrespective of the physical setting and history of the ice. Typically, resistivity is within a factor of two of 80 kΩ m at –20° C with an activation energy of 0.22 eV. In contrast, the resistivity of surface ice at Wormald Ice Piedmont, where the ice is at 0°C throughout, is two orders of magnitude higher and falls at the lower end of the range of resistivities for temperate ice.


1998 ◽  
Vol 27 ◽  
pp. 110-112 ◽  
Author(s):  
Christian Hjort ◽  
Svante Björck ◽  
Ólafur Ingólfsson ◽  
Per Möller

The chronology of post-Last Glaciol Maximum deglaciation in the northern Antarctic Peninsula region is discussed. It is concluded that, contrary to what was earlier believed, the deglaciation process here was largely out-of-phase with that in the Northern Hemisphere. Although, for global eustatic reasons, the marine-based glaciers may have retreated simultaneously with ice-melting in the Northern Hemisphere, the land-based glaciers retreated only slowly during the first halfoftlie Holocene, about 9000-5000 BP. This may have been due either to increased precipitation counterweighing ablation or to delayed warming. A distinct but rather brief Glaciol readvancc took place around 5000 BP, probably caused by a period of renewed cooling. It was followed by the Holocene climatic optimum, about 4000-3000 BP. This warm “hypsithermal” period thus came much later than its equivalent in the Northern Hemisphere, but it roughly coincided with the Milankovitchcan Holocene insolation maximum for these southern latitudes.


Sign in / Sign up

Export Citation Format

Share Document