The geology of the oceanic crust: Compressional wave velocities of oceanic rocks

1973 ◽  
Vol 78 (23) ◽  
pp. 5155-5172 ◽  
Author(s):  
Paul J. Fox ◽  
Edward Schreiber ◽  
J. J. Peterson
Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1162-1167 ◽  
Author(s):  
Joseph B. Molyneux ◽  
Douglas R. Schmitt

Elastic‐wave velocities are often determined by picking the time of a certain feature of a propagating pulse, such as the first amplitude maximum. However, attenuation and dispersion conspire to change the shape of a propagating wave, making determination of a physically meaningful velocity problematic. As a consequence, the velocities so determined are not necessarily representative of the material’s intrinsic wave phase and group velocities. These phase and group velocities are found experimentally in a highly attenuating medium consisting of glycerol‐saturated, unconsolidated, random packs of glass beads and quartz sand. Our results show that the quality factor Q varies between 2 and 6 over the useful frequency band in these experiments from ∼200 to 600 kHz. The fundamental velocities are compared to more common and simple velocity estimates. In general, the simpler methods estimate the group velocity at the predominant frequency with a 3% discrepancy but are in poor agreement with the corresponding phase velocity. Wave velocities determined from the time at which the pulse is first detected (signal velocity) differ from the predominant group velocity by up to 12%. At best, the onset wave velocity arguably provides a lower bound for the high‐frequency limit of the phase velocity in a material where wave velocity increases with frequency. Each method of time picking, however, is self‐consistent, as indicated by the high quality of linear regressions of observed arrival times versus propagation distance.


1998 ◽  
Vol 7 ◽  
pp. 12-14 ◽  
Author(s):  
Zhidan Zhao ◽  
Hongsen Xie ◽  
Wenge Zhou ◽  
Zeming Zhang ◽  
Jie Guo ◽  
...  

2021 ◽  
Author(s):  
Jingyi Guo ◽  
Liqin Sang ◽  
Min Li ◽  
Michael C. Pope ◽  
Yuefeng Sun

1964 ◽  
Vol 1 (1) ◽  
pp. 10-22 ◽  
Author(s):  
D. L. Barrett ◽  
M. Berry ◽  
J. E. Blanchard ◽  
M. J. Keen ◽  
R. E. McAllister

The results of seismic refraction profiles on the Atlantic coast of Nova Scotia and on the continental shelf off Nova Scotia are presented. Compressional and shear waves have been observed in the crust and mantle and suggest that the thickness of the crust is about 34 km. The compressional wave velocities recorded in the main crust and upper mantle are 6.10 and 8.11 km s−1 respectively. No compressional waves with values of velocity between these values can be identified, and this suggests that any "intermediate" layer is thin or absent. The corresponding shear wave velocities are 3.68 and 4.53 km s−1. Values of Poisson's ratio in the crust and mantle are 0.22 and 0.28. Alternative models of the crust which, on the evidence of travel times, might fit the observed results are discussed.


Geophysics ◽  
1981 ◽  
Vol 46 (3) ◽  
pp. 288-297 ◽  
Author(s):  
Leonie E. A. Jones ◽  
Herbert F. Wang

Compressional and shear‐wave velocities were measured in the laboratory from 1 bar to 4 kbar confining pressure for wet, undrained samples of Cretaceous shales from depths of 3200 and 5000 ft in the Williston basin, North Dakota. These shales behave as transversely isotropic elastic media, the plane of circular symmetry coinciding with the bedding plane. For compressional waves, the velocity is higher for propagation in the bedding plane than at right angles to it, and the anisotropy is greater for the 5000-ft shale. For shear waves, the SH‐wave perpendicular to bedding and the SV‐wave parallel to bedding propagate with the same speed, which is about 25 percent lower than that for the SH‐wave parallel to bedding. In general, compressional and shear velocities are higher for the indurated 5000-ft shale than for the friable 3200-ft shale. All velocities increase with in‐increasing confining pressure to 4 kbar. The 3200-ft shale exhibits velocity hysteresis as a function of pressure, whereas this effect is almost nonexistent for the 5000-ft shale. Many features of the dependence of velocity on pressure can be explained by consideration of effective pressure and the degree of water saturation. For both shales, laboratory compressional wave velocities are on average 10 percent higher than log‐derived velocities. The discrepancy cannot be explained completely, but likely contributing factors are sampling bias, velocity dispersion, and formation damage in situ.


Sign in / Sign up

Export Citation Format

Share Document