scholarly journals correction of ‘Minor and trace element geochemistry of volcanic rocks dredged from the Galapagos Spreading Center: Role of crystal fractionation and mantle heterogeneity’

1982 ◽  
Vol 87 (B2) ◽  
pp. 1163-1163
Author(s):  
David A. Clague
2008 ◽  
Vol 23 (4) ◽  
pp. 321-330 ◽  
Author(s):  
Tim S. Brewer ◽  
Melanie J. Leng ◽  
Anson W. Mackay ◽  
Angela L. Lamb ◽  
Jonathan J. Tyler ◽  
...  

2006 ◽  
Vol 43 (11) ◽  
pp. 1621-1637 ◽  
Author(s):  
Melissa Bowerman ◽  
Amy Christianson ◽  
Robert A Creaser ◽  
Robert W Luth

Alkaline igneous rocks of the Crowsnest Formation in southwestern Alberta and in the Howell Creek area in southeastern British Columbia have been suggested previously to be cogenetic. To test this hypothesis, samples of both suites were characterized petrographically and their major and trace element geochemistry was determined. A subset of the samples was analyzed for whole-rock Sr and Nd isotope geochemistry. The samples of the two suites are latites, trachytes, and phonolites based on the International Union of Geological Sciences (IUGS) total alkalis versus silica (TAS) diagram. Samples from both suites show similar patterns on mantle-normalized trace element diagrams, being enriched relative to mantle values but depleted in the high field-strength elements Nb, Ta, and Ti relative to the large-ion lithophile elements. The chondrite-normalized rare-earth element (REE) patterns for both suites are light REE enriched, with no Eu anomaly and flat heavy REE. The isotope geochemistry of both suites is characterized by low initial 87Sr/86Sr (SrT = 0.704 to 0.706) and low εNdT (–7 to –16). The Howell Creek samples have lower εNdT and higher SrT than do the Crowsnest samples. Based on the intra- and intersuite differences in the isotope geochemistry, we conclude that these samples are not cogenetic, but rather represent samples that have experienced similar evolutionary histories from a heterogeneous source region in the subcontinental lithospheric mantle.


Geology ◽  
2020 ◽  
Author(s):  
Corey J. Wall ◽  
Richard E. Hanson ◽  
Mark Schmitz ◽  
Jonathan D. Price ◽  
R. Nowell Donovan ◽  
...  

The bimodal Wichita igneous province (WIP) represents the only exposed Ediacaran to Cambrian anorogenic magmatic assemblage present along the buried southern margin of Laurentia and was emplaced during rifting in the Southern Oklahoma Aulacogen prior to Cambrian opening of the southern Iapetus Ocean. Here, we establish the first high-precision U-Pb zircon geochronological framework for the province. Weighted mean 206Pb/238U dates from mafic and felsic rocks in the Wichita Mountains indicate emplacement in a narrow time frame from 532.49 ± 0.12 Ma to 530.23 ± 0.14 Ma. Rhyolite lavas in the Arbuckle Mountains farther east yield weighted mean 206Pb/238U dates of 539.20 ± 0.15 Ma and 539.46 ± 0.13 Ma. These dates for the WIP indicate that magmatism in the Southern Oklahoma Aulacogen postdated the ca. 540 Ma rift-drift transition along the Appalachian margin to the east. Wholerock trace-element and isotopic geochemistry, supplemented by trace elements in zircon, tracks the evolution of magma sources during WIP petrogenesis. These data indicate that initial melting and assimilation of subcontinental mantle lithosphere by an uprising mantle plume were followed by increasing involvement of asthenospheric melts with time. We suggest that upwelling of this plume in the area of the Southern Oklahoma Aulacogen triggered an inboard jump of the spreading center active along the eastern margin of Laurentia, which led to separation of the Precordillera terrane (now located in Argentina) from the Ouachita embayment present in the southern Laurentian margin.


Sign in / Sign up

Export Citation Format

Share Document