oxygen isotope composition
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 49)

H-INDEX

45
(FIVE YEARS 4)

2022 ◽  
Vol 578 ◽  
pp. 117320
Author(s):  
Anna R. Waldeck ◽  
Haley C. Olson ◽  
Weiqi Yao ◽  
Clara L. Blättler ◽  
Adina Paytan ◽  
...  

2021 ◽  
Vol 17 (5) ◽  
pp. 1881-1902
Author(s):  
Clément Outrequin ◽  
Anne Alexandre ◽  
Christine Vallet-Coulomb ◽  
Clément Piel ◽  
Sébastien Devidal ◽  
...  

Abstract. Continental atmospheric relative humidity is a major climate parameter whose variability is poorly understood by global climate models. Models' improvement relies on model–data comparisons for past periods. However, there are no truly quantitative indicators of relative humidity for the pre-instrumental period. Previous studies highlighted a quantitative relationship between the triple oxygen isotope composition of phytoliths, particularly the 17O excess of phytoliths, and atmospheric relative humidity. Here, as part of a series of calibrations, we examine the respective controls of soil water isotope composition, temperature, CO2 concentration and relative humidity on phytolith 17O excess. For that purpose, the grass species Festuca arundinacea was grown in growth chambers where these parameters were varying. The setup was designed to control the evolution of the triple oxygen isotope composition of phytoliths and all the water compartments of the soil–plant–atmosphere continuum. Different analytical techniques (cavity ring-down spectroscopy and isotope ratio mass spectrometry) were used to analyze water and silica. An inter-laboratory comparison allowed to strengthen the isotope data matching. Water and phytolith isotope compositions were compared to previous datasets obtained from growth chamber and natural tropical sites. The results show that the δ′18O value of the source water governs the starting point from which the triple oxygen isotope composition of leaf water, phytolith-forming water and phytoliths evolves. However, since the 17O excess varies little in the growth chamber and natural source waters, this has no impact on the strong relative humidity dependency of the 17O excess of phytoliths, demonstrated for the 40 %–80% relative humidity range. This relative humidity dependency is not impacted by changes in air temperature or CO2 concentration either. A relative humidity proxy equation is proposed. Each per meg of change in phytolith 17O excess reflects a change in atmospheric relative humidity of ca. 0.2 %. The ±15 per meg reproducibility on the measurement of phytolith 17O excess corresponds to a ±3.6 % precision on the reconstructed relative humidity. The low sensitivity of phytolith 17O excess to climate parameters other than relative humidity makes it particularly suitable for quantitative reconstructions of continental relative humidity changes in the past.


SOIL ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 145-159
Author(s):  
Sam P. Jones ◽  
Aurore Kaisermann ◽  
Jérôme Ogée ◽  
Steven Wohl ◽  
Alexander W. Cheesman ◽  
...  

Abstract. The oxygen isotope composition of atmospheric carbon dioxide (CO2) is intimately linked to large-scale variations in the cycling of CO2 and water across the Earth's surface. Understanding the role the biosphere plays in modifying the oxygen isotope composition of atmospheric CO2 is particularly important as this isotopic tracer has the potential to constrain estimates of important processes such as gross primary production at large scales. However, constraining the atmospheric mass budget for the oxygen isotope composition of CO2 also requires that we understand better the contribution of soil communities and how they influence the rate of oxygen isotope exchange between soil water and CO2 (kiso) across a wide range of soil types and climatic zones. As the carbonic anhydrases (CAs) group of enzymes enhances the rate of CO2 hydration within the water-filled pore spaces of soils, it is important to develop understanding of how environmental drivers can impact kiso through changes in their activity. Here we estimate kiso and measure associated soil properties in laboratory incubation experiments using 44 soils sampled from sites across western Eurasia and north-eastern Australia. Observed values for kiso always exceeded theoretically derived uncatalysed rates, indicating a significant influence of CAs on the variability of kiso across the soils studied. We identify soil pH as the principal source of variation, with greater kiso under alkaline conditions suggesting that shifts in microbial community composition or intra–extra-cellular dissolved inorganic carbon gradients induce the expression of more or higher activity forms of CAs. We also show for the first time in soils that the presence of nitrate under naturally acidic conditions reduces kiso, potentially reflecting a direct or indirect inhibition of CAs. This effect appears to be supported by a supplementary ammonium nitrate fertilisation experiment conducted on a subset of the soils. Greater microbial biomass also increased kiso under a given set of chemical conditions, highlighting a putative link between CA expression and the abundance of soil microbes. These data provide the most extensive analysis of spatial variations in soil kiso to date and indicate the key soil trait datasets required to predict variations in kiso at large spatial scales, a necessary next step to constrain the important role of soil communities in the atmospheric mass budget of the oxygen isotope composition of CO2.


2021 ◽  
Author(s):  
Clément Outrequin ◽  
Anne Alexandre ◽  
Christine Vallet-Coulomb ◽  
Clément Piel ◽  
Sébastien Devidal ◽  
...  

Abstract. Continental atmospheric relative humidity is a major climate parameter whose variability is poorly understood by global climate models. Models’improvement relies on model-data comparisons for past periods. However, there are no truly quantitative indicators of relative humidity for the pre-instrumental period. Previous studies highlighted a quantitative relationship between the triple oxygen isotope composition of phytoliths, and particularly the 17O-excess of phytoliths, and atmospheric relative humidity. Here, as part of a series of calibrations, we examine the respective controls of soil water isotope composition, temperature, CO2 concentration and relative humidity on phytolith 17O-excess. For that purpose, the grass species Festuca arundinacea was grown in growth chambers where these parameters were varying. The setup was designed to control the evolution of the triple oxygen isotope composition of phytoliths and all the water compartments of the soil-plant-atmosphere continuum. Different analytical techniques (cavity ring-down spectroscopy and isotope ratio mass spectrometry) were used to analyse water and silica. An inter-laboratory comparison allowed to strengthen the isotope data matching. Water and phytolith isotope compositions were compared to previous datasets obtained from growth chamber and natural tropical sites. The results show that the δ'18O value of the source water governs the starting point from which the triple oxygen isotope composition of leaf water, phytolith-forming water and phytoliths evolve. However, since the 17O-excess varies little in the growth chamber and natural source waters, this has no impact on the strong relative humidity-dependency of the 17O-excess of phytoliths, demonstrated for the 40–80 % relative humidity range. This relative humidity-dependency is not impacted by changes in air temperature or CO2 concentration either. A relative humidity proxy equation is proposed. Each per meg of change in phytolith 17O-excess reflects a change in atmospheric relative humidity of ca. 0.2 %. The ±15 per meg reproducibility on the measurement of phytolith 17O-excess corresponds to a ± 3.6 % precision on the reconstructed relative humidity. The low sensitivity of phytolith 17O-excess to climate parameters other than relative humidity makes it particularly suitable for quantitative reconstructions of continental relative humidity changes in the past.


Sign in / Sign up

Export Citation Format

Share Document