Compressional wave velocities of a lunar regolith sample in a simulated lunar environment

1982 ◽  
Vol 87 (B3) ◽  
pp. 1899 ◽  
Author(s):  
Douglas M. Johnson ◽  
A. L. Frisillo ◽  
James Dorman ◽  
Gary V. Latham ◽  
David Strangway
Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1162-1167 ◽  
Author(s):  
Joseph B. Molyneux ◽  
Douglas R. Schmitt

Elastic‐wave velocities are often determined by picking the time of a certain feature of a propagating pulse, such as the first amplitude maximum. However, attenuation and dispersion conspire to change the shape of a propagating wave, making determination of a physically meaningful velocity problematic. As a consequence, the velocities so determined are not necessarily representative of the material’s intrinsic wave phase and group velocities. These phase and group velocities are found experimentally in a highly attenuating medium consisting of glycerol‐saturated, unconsolidated, random packs of glass beads and quartz sand. Our results show that the quality factor Q varies between 2 and 6 over the useful frequency band in these experiments from ∼200 to 600 kHz. The fundamental velocities are compared to more common and simple velocity estimates. In general, the simpler methods estimate the group velocity at the predominant frequency with a 3% discrepancy but are in poor agreement with the corresponding phase velocity. Wave velocities determined from the time at which the pulse is first detected (signal velocity) differ from the predominant group velocity by up to 12%. At best, the onset wave velocity arguably provides a lower bound for the high‐frequency limit of the phase velocity in a material where wave velocity increases with frequency. Each method of time picking, however, is self‐consistent, as indicated by the high quality of linear regressions of observed arrival times versus propagation distance.


1998 ◽  
Vol 7 ◽  
pp. 12-14 ◽  
Author(s):  
Zhidan Zhao ◽  
Hongsen Xie ◽  
Wenge Zhou ◽  
Zeming Zhang ◽  
Jie Guo ◽  
...  

2021 ◽  
Author(s):  
Miguel E. Coto ◽  
Cole Pazar ◽  
Christopher Shanley ◽  
Benedict McKeown

2021 ◽  
Author(s):  
Jingyi Guo ◽  
Liqin Sang ◽  
Min Li ◽  
Michael C. Pope ◽  
Yuefeng Sun

Author(s):  
Jieneng Liang ◽  
Lijun Tao ◽  
Weiwei Zhang ◽  
Junyue Tang ◽  
Yong Pang ◽  
...  

Author(s):  
Qiquan Quan ◽  
S. Li ◽  
S. Jiang ◽  
X. Hou ◽  
Z. Deng

This paper presents a drilling and coring device for the lunar exploration, which is possibly utilized to acquire the lunar regolith with a certain depth. The drilling device is composed of three components: rotary unit, percussive unit and penetrating unit. The rotary-percussion drill can work in two different operating modes: rotary mode and rotary-percussive mode, depending on the properties of cut object. In the relatively loose regolith, rotation and penetration can make the drill work in a well state. However, once rock is encountered in the drilling process, besides rotation and penetration, percussion must be launched to reduce the drilling power and the required penetrating force. Due to the indetermination of the lunar environment, it is not easy to control the coring drill to adapt to the encountered conditions. To obtain a high coring ratio with relatively low power, an intelligent drilling strategy is inevitably proposed to accomplish the drilling process control. Considering the lunar soil simulant should cover the possible composition of real lunar soil, simulant are classified into several levels based on the generalized drillability. For each level of drillability of lunar soil simulant, experiments are conducted to get the characteristics in frequency-domain of rotary torque output. The sampled characteristics of rotary torque output are utilized to train the object-recognition system based on Support Vector Machine (SVM). Information in all the levels of drillability of lunar soil simulant is stored in the object-recognition system as an expert system. To understand the properties of the drilling object, rotary torque is selected to identify the level of drillability of simulant in drilling process. Subsequently, once the level is obtained, drilling strategy is adjusted to adapt to the current level correspondingly in real time. Experiments are conducted to verify the intelligent drilling strategy successfully.


1964 ◽  
Vol 1 (1) ◽  
pp. 10-22 ◽  
Author(s):  
D. L. Barrett ◽  
M. Berry ◽  
J. E. Blanchard ◽  
M. J. Keen ◽  
R. E. McAllister

The results of seismic refraction profiles on the Atlantic coast of Nova Scotia and on the continental shelf off Nova Scotia are presented. Compressional and shear waves have been observed in the crust and mantle and suggest that the thickness of the crust is about 34 km. The compressional wave velocities recorded in the main crust and upper mantle are 6.10 and 8.11 km s−1 respectively. No compressional waves with values of velocity between these values can be identified, and this suggests that any "intermediate" layer is thin or absent. The corresponding shear wave velocities are 3.68 and 4.53 km s−1. Values of Poisson's ratio in the crust and mantle are 0.22 and 0.28. Alternative models of the crust which, on the evidence of travel times, might fit the observed results are discussed.


Sign in / Sign up

Export Citation Format

Share Document