Transgressions, regressions and relative sea level changes on the Cretaceous shelf of Israel and adjacent countries. A critical evaluation of Cretaceous global sea level correlations

1990 ◽  
Vol 5 (4) ◽  
pp. 619-637 ◽  
Author(s):  
Zeev Lewy
2002 ◽  
Vol 29 (1) ◽  
pp. 39-61 ◽  
Author(s):  
Paul Adam

Saltmarshes are a major, widely distributed, intertidal habitat. They are dynamic systems, responding to changing environmental conditions. For centuries, saltmarshes have been subject to modification or destruction because of human activity. In this review, the range of factors influencing the survival of saltmarshes is discussed. Of critical importance are changes in relative sea level and in tidal range. Relative sea level is affected by changes in absolute sea level, changes in land level and the capacity of saltmarshes to accumulate and retain sediment. Many saltmarshes are starved of sediment because of catchment modification and coastal engineering, or exposed to erosive forces, which may be of natural origin or reflect human interference. The geographical distribution of individual saltmarsh species reflects climate, so that global climatic change will be reflected by changes in distribution and abundance of species, although the rate of change in communities dominated by perennial plants is difficult to predict. Humans have the ability to create impacts on saltmarshes at a range of scales from individual sites to globally. Pressures on the environment created by the continued increase in the human population, particularly in developing tropical countries, and the likely consequences of the enhanced greenhouse effect on both temperature and sea level give rise to particular concerns. Given the concentration of population growth and development in the coastal zone, and the potential sensitivity of saltmarsh to change in sea level, it is timely to review the present state of saltmarshes and to assess the likelihood of changes in the near (25 years) future. By 2025, global sea level rise and warming will have impacts on saltmarshes. However, the most extensive changes are likely to be the direct result of human actions at local or regional scales. Despite increasing recognition of the ecological value of saltmarsh, major projects involving loss of saltmarshes but deemed to be in the public interest will be approved. Pressures are likely to be particularly severe in the tropics, where very little is known about saltmarshes. At the local scale the cumulative impacts of activities, which individually have minor effects, may be considerable. Managers of saltmarshes will be faced with difficult choices including questions as to whether traditional uses should be retained, whether invasive alien species or native species increasing in abundance should be controlled, whether planned retreat is an appropriate response to rising relative sea level or whether measures can be taken to reduce erosion. Decisions will need to take into account social and economic as well as ecological concerns.


1969 ◽  
Vol 26 ◽  
pp. 29-32
Author(s):  
Ole Bennike ◽  
Martin Skov Andreasen ◽  
Jørn Bo Jensen ◽  
Matthias Moros ◽  
Nanna Noe-Nygaard

The Baltic Sea and Kattegat are connected via three straits: Storebælt, Lillebælt and Øresund (Fig. 1). Øresund is the shallowest with a threshold around 7 m deep and increasing water depths to the north (Fig. 2). In the early Holocene, global sea-level rise led to reflooding of Øresund. It started in northern Øresund which was transformed into a fjord. However, so far the timing of the transgression has not been well determined, but sediment cores collected north of the threshold, at water depths of 12 to 20 m, and a new series of radiocarbon ages help to constrain this. As the relative sea level continued to rise, the threshold in Øresund was also flooded, and Øresund became a strait. In mid-Holocene time, the relative sea level rose until it was 4–5 m higher than at present, and low-lying areas around Øresund became small fjords. During the late Holocene, the relative sea level fell again. Part of the data set discussed here was presented by Andreasen (2005).


2007 ◽  
Vol 242 (1-3) ◽  
pp. 5-26 ◽  
Author(s):  
D.E. Smith ◽  
R.A. Cullingford ◽  
T.M. Mighall ◽  
J.T. Jordan ◽  
P.T. Fretwell

2011 ◽  
Vol 26 (4) ◽  
pp. 353-361 ◽  
Author(s):  
Ole Bennike ◽  
Bernd Wagner ◽  
Andreas Richter

2021 ◽  
Author(s):  
Gustav Pallisgaard-Olesen ◽  
Vivi Kathrine Pedersen ◽  
Natalya Gomez

<div> <p>The landscape in western Scandinavia has undergone dramatic changes through numerous glaciations during the Quaternary. These changes in topography and in the volumes of offshore sediment deposits, have caused significant isostatic adjustments and local sea level changes, owing to erosional unloading and depositional loading of the lithosphere. Mass redistribution from erosion and deposition also has the potential to cause significant pertubations of the geoid, resulting in additional sea-level changes. The combined sea-level response from these processes, is yet to be investigated in detail for Scandinavia.</p> </div><div> <p>In this study we estimate the total sea level change from late-Pliocene- Quaternary glacial erosion and deposition in the Scandinavian region, using a gravitationally self-consistent global sea level model that includes the full viscoelastic response of the solid Earth to surface loading and unloading. In addition to the total late Pliocene-Quaternary mass redistribution, we <span>also </span>estimate transient sea level changes related specifically to the two latest glacial cycles.</p> </div><div> <p>We utilize existing observations of offshore sediment thicknesses of glacial origin, and combine these with estimates of onshore glacial erosion and estimates of erosion on the inner shelf. Based on these estimates, we can define mass redistribution and construct a preglacial landscape setting.</p> </div><div> <p>Our preliminary results show <span>perturbations of</span> the local sea level up to ∼ 200 m since<span> the</span> late-Pliocene in the Norwegian Sea, suggesting that erosion and deposition ha<span>ve</span> influenced the local paleo sea level history in Scandinavia significantly.</p> </div>


Sign in / Sign up

Export Citation Format

Share Document