Fitting Johnson SB curve by the method of maximum likelihood to annual maximum daily rainfalls

1987 ◽  
Vol 23 (4) ◽  
pp. 728-732 ◽  
Author(s):  
N. T. Kottegoda
Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1801
Author(s):  
Abdulhakim A. Al-Babtain ◽  
Ibrahim Elbatal ◽  
Christophe Chesneau ◽  
Farrukh Jamal

This paper is devoted to a new class of distributions called the Box-Cox gamma-G family. It is a natural generalization of the useful Ristić–Balakrishnan-G family of distributions, containing a wide variety of power gamma-G distributions, including the odd gamma-G distributions. The key tool for this generalization is the use of the Box-Cox transformation involving a tuning power parameter. Diverse mathematical properties of interest are derived. Then a specific member with three parameters based on the half-Cauchy distribution is studied and considered as a statistical model. The method of maximum likelihood is used to estimate the related parameters, along with a simulation study illustrating the theoretical convergence of the estimators. Finally, two different real datasets are analyzed to show the fitting power of the new model compared to other appropriate models.


1983 ◽  
Vol 103 ◽  
pp. 543-543
Author(s):  
D. G. Lawrie ◽  
H. C. Ford

We used a sequence of velocity-modulated photographs to find and measure the radial velocities of faint planetary nebulae in the center of M31. The photographs were made with a Velocity Modulating Camera (VMC) which consists of a temperature-tuned 2.1 Å (FWHM) (O III) λ 5007 interference filter, a cooled, two-stage image intensifier, and a calibrating photomultiplier. The camera was mounted at the Cassegrain focus of the Shane 3 m telescope at Lick Observatory. We identified 19 new planetary nebulae, bringing the total number of known planetaries within 250 pc of M31's nucleus to 45. From the plate series, we derived radial velocities and relative brightnesses from 32 of the nebulae and placed radial velocity limits on the remaining nebulae in the field. By applying the method of maximum likelihood to the observed radial velocity distribution, we derive a mean heliocentric velocity of −309 (±25) km s−1 and a velocity dispersion of 155 (±22) km s−1 for the planetary nebulae.


1997 ◽  
Vol 1 (2) ◽  
pp. 357-366 ◽  
Author(s):  
D. A. Jones

Abstract. A new approach is developed for the specification of the plotting positions used in the frequency analysis of extreme flows, rainfalls or similar data. The approach is based on the concept of maximum likelihood estimation and it is applied here to provide plotting positions for a range of problems which concern non-standard versions of annual-maximum data. This range covers the inclusion of incomplete years of data and also the treatment of cases involving regional maxima, where the number of sites considered varies from year to year. These problems, together with a not-to-be-recommended approach to using historical information, can be treated as special cases of a non-standard situation in which observations arise from different statistical distributions which vary in a simple, known, way.


Sign in / Sign up

Export Citation Format

Share Document