Plasma membrane lipid metabolism of petunia petals during senescence

1994 ◽  
Vol 90 (2) ◽  
pp. 279-284 ◽  
Author(s):  
A. Borochov ◽  
M. H. Cho ◽  
W. F. Boss
1994 ◽  
Vol 90 (2) ◽  
pp. 279-284 ◽  
Author(s):  
A. Borochov ◽  
M. H. Cho ◽  
W. F. Boss

Lipids ◽  
1988 ◽  
Vol 23 (9) ◽  
pp. 829-833 ◽  
Author(s):  
Michael W. Hamm ◽  
Anna Sekowski ◽  
Roni Ephrat

1986 ◽  
Vol 126 (3) ◽  
pp. 379-388 ◽  
Author(s):  
Brian J. Del Buono ◽  
Patrick L. Williamson ◽  
Robert A. Schlegel

2003 ◽  
Vol 4 (2) ◽  
pp. 69 ◽  
Author(s):  
W. Jessup ◽  
K. Gaus ◽  
L. Kritharides ◽  
A. Boettcher ◽  
W. Drobnik ◽  
...  

1995 ◽  
Vol 23 (4) ◽  
pp. 254-263 ◽  
Author(s):  
M Marutaka ◽  
H Iwagaki ◽  
K Mizukawa ◽  
N Tanaka ◽  
K Orita

The time-course of changes in the plasma-membrane lipid bilayer induced by tumour necrosis factor-α (TNF) were investigated in cultured cells using spin-label electron-spin-resonance techniques. Treatment of K 562 cells, a human chronic myelocytic leukaemia cell line, in suspension culture with TNF for up to 6 h caused an initial increase in cell-membrane fluidity, which returned to the control level after 12 h of treatment. After 24 h of treatment, the cell-membrane fluidity had decreased and this decrease was maintained after 48 h of treatment. In Daudi cells, a human malignant lymphoma cell line, TNF, did not induce any changes in cell-membrane fluidity, indicating that the effect of TNF on membrane structure is cell-specific. The early and transient change in membrane fluidity in K 562 cells is probably related to signal generation, while the later, persistent change may reflect the phenotype of TNF-treated cells, in particular, changes in the plasma membrane-cytoplasmic complex. Histochemical electron microscopic studies indicated that the membrane fluidity changes induced by TNF have an ultrastructural correlate.


Sign in / Sign up

Export Citation Format

Share Document