membrane lipid composition
Recently Published Documents


TOTAL DOCUMENTS

453
(FIVE YEARS 46)

H-INDEX

52
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Rakesh Ganji ◽  
Joao A. Paulo ◽  
Yuecheng Xi ◽  
Ian Kline ◽  
Jiang Zhu ◽  
...  

AbstractThe intimate association between the endoplasmic reticulum (ER) and mitochondrial membranes at ER-mitochondria contact sites serves as a platform for several critical cellular processes, in particular lipid synthesis. Enzymes involved in lipid biosynthesis are enriched at contacts and membrane lipid composition at contacts is distinct relative to surrounding membranes. How contacts are remodeled and the subsequent biological consequences of altered contacts such as perturbed lipid metabolism remains poorly understood. Here we show that the p97 AAA-ATPase and its ER-tethered ubiquitin-X domain adaptor 8 (UBXD8) regulate the prevalence of ER-mitochondria contacts. The p97-UBXD8 complex localizes to contacts and loss of this complex increases contacts in a manner that is dependent on p97 catalytic activity. Quantitative proteomics of purified contacts demonstrates alterations in proteins regulating lipid metabolism upon loss of UBXD8. Furthermore, lipidomics studies indicate significant changes in distinct lipid species in UBXD8 knockout cells. We show that loss of p97-UBXD8 results in perturbed contacts due to an increase in membrane lipid saturation via SREBP1 and the lipid desaturase SCD1. Aberrant contacts in p97-UBXD8 loss of function cells can be rescued by supplementation with unsaturated fatty acids or overexpression of SCD1. Perturbation of contacts and inherent lipid synthesis is emerging as a hallmark to a variety of human disorders such as neurodegeneration. Notably, we find that the SREBP1-SCD1 pathway is negatively impacted in the brains of mice with p97 mutations that cause neurodegeneration. Our results suggest that contacts are exquisitely sensitive to alterations to membrane lipid composition and saturation in a manner that is dependent on p97-UBXD8.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 919
Author(s):  
Manuel Torres ◽  
Sebastià Parets ◽  
Javier Fernández-Díaz ◽  
Roberto Beteta-Göbel ◽  
Raquel Rodríguez-Lorca ◽  
...  

Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).


Author(s):  
Carla C C R de Carvalho ◽  
Agustina Taglialegna ◽  
Adriana E Rosato

Abstract Background The cyclic anionic lipopeptide daptomycin is used in the treatment of severe infections caused by Gram-positive pathogens, including MRSA. Daptomycin resistance, although rare, often results in treatment failure. Paradoxically, in MRSA, daptomycin resistance is usually accompanied by a concomitant decrease in β-lactam resistance in what is known as the ‘see-saw effect’. This resensitization is extensively used for the treatment of MRSA infections, by combining daptomycin and a β-lactam antibiotic, such as oxacillin. Objectives We aimed: (i) to investigate the combined effects of daptomycin and oxacillin on the lipid composition of the cellular membrane of both daptomycin-resistant and -susceptible MRSA strains; and (ii) to assess the involvement of the post-translocational protein PrsA, which plays an important role in oxacillin resistance in MRSA, in membrane lipid composition and remodelling during daptomycin resistance/β-lactam sensitization. Results The combination of microbiological and biochemical studies, with fluorescence microscopy using lipid probes, showed that the lipid composition and surface charge of the daptomycin-resistant cells exposed to daptomycin/oxacillin were dependent on antibiotic concentration and directly associated with PrsA, which influenced cardiolipin remodelling/relocation. Conclusions Our findings show that PrsA, in addition to its post-transcriptional role in the maturation of PBP 2a, is a key mediator of cell membrane remodelling connected to the see-saw effect and may have a key role in the resensitization of daptomycin-resistant strains to β-lactams, such as oxacillin.


Metabolites ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 636
Author(s):  
Artur B. Lourenço ◽  
Marta Artal-Sanz

The mitochondrial prohibitin (PHB) complex, composed of PHB-1 and PHB-2, is an evolutionarily conserved context-dependent modulator of longevity. This extremely intriguing phenotype has been linked to alterations in mitochondrial function and lipid metabolism. The true biochemical function of the mitochondrial PHB complex remains elusive, but it has been shown to affect membrane lipid composition. Recent work, using large-scale biochemical approaches, has highlighted a broad effect of PHB on the C. elegans metabolic network. Collectively, the biochemical data support the notion that PHB modulates, at least partially, worm longevity through the moderation of fat utilisation and energy production via the mitochondrial respiratory chain. Herein, we review, in a systematic manner, recent biochemical insights into the impact of PHB on the C. elegans metabolome.


2021 ◽  
pp. canres.3863.2020
Author(s):  
Lisa M. Butler ◽  
Chui Yan Mah ◽  
Jelle Machiels ◽  
Andrew D. Vincent ◽  
Swati Irani ◽  
...  

2021 ◽  
Vol 30 (3) ◽  
pp. 238-247
Author(s):  
O. Ali ◽  
Z. Petrási ◽  
T. Donkó ◽  
H. Fébel ◽  
M. Mézes ◽  
...  

mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Anne-Catherine Ahn ◽  
Evelien Jongepier ◽  
J. Merijn Schuurmans ◽  
W. Irene C. Rijpstra ◽  
Jaap S. Sinninghe Damsté ◽  
...  

ABSTRACT The genus Thioalkalivibrio comprises sulfur-oxidizing bacteria thriving in soda lakes at high pH and salinity. Depending on the geographical location and the season, these lakes can strongly vary in temperature. To obtain a comprehensive understanding of the molecular and physiological adaptations to low temperature, we compared the responses of two Thioalkalivibrio strains to low (10°C) and high (30°C) temperatures. For this, the strains were grown under controlled conditions in chemostats and analyzed for their gene expression (RNA sequencing [RNA-Seq]), membrane lipid composition, and glycine betaine content. The strain Thioalkalivibrio versutus AL2T originated from a soda lake in southeast Siberia that is exposed to strong seasonal temperature differences, including freezing winters, whereas Thioalkalivibrio nitratis ALJ2 was isolated from an East African Rift Valley soda lake with a constant warm temperature the year round. The strain AL2T grew faster than ALJ2 at 10°C, likely due to its 3-fold-higher concentration of the osmolyte glycine betaine. Moreover, significant changes in the membrane lipid composition were observed for both strains, leading to an increase in their unsaturated fatty acid content via the Fab pathway to avoid membrane stiffness. Genes for the transcriptional and translational machinery, as well as for counteracting cold-induced hampering of nucleotides and proteins, were upregulated. Oxidative stress was reduced by induction of vitamin B12 biosynthesis genes, and growth at 10°C provoked downregulation of genes involved in the second half of the sulfur oxidation pathway. Genes for intracellular signal transduction were differentially expressed, and interestingly, AL2T upregulated flagellin expression, whereas ALJ2 downregulated it. IMPORTANCE In addition to their haloalkaline conditions, soda lakes can also harbor a variety of other extreme parameters, to which their microbial communities need to adapt. However, for most of these supplementary stressors, it is not well known yet how haloalkaliphiles adapt and resist. Here, we studied the strategy for adaptation to low temperature in the haloalkaliphilic genus Thioalkalivibrio by using two strains isolated from soda lakes with different temperature regimes. Even though the strains showed a strong difference in growth rate at 10°C, they exhibited similar molecular and physiological adaptation responses. We hypothesize that they take advantage of resistance mechanisms against other stressors commonly found in soda lakes, which are therefore maintained in the bacteria living in the absence of low-temperature pressure. A major difference, however, was detected for their glycine betaine content at 10°C, highlighting the power of this osmolyte to also act as a key compound in cryoprotection.


2021 ◽  
Author(s):  
Hadi Rahmaninejad ◽  
Darin D. Vaughan

AbstractMembrane lipid composition is a critical feature of cell function, where cholesterol is a major lipid sterol component that influences the membranes physical and electrical properties. The effects of cholesterol on transport properties between adjacent to the cells, especially in junctions formed between cells is not completely understood. These junctions where substances transport and signaling is critical may be affected by modifying the cholesterol composition of the membrane in these junctional regions. Here we show how the cholesterol content in a membrane can regulate these phenomena by changing their effect on transport into and through regions between cell membranes in close proximity. Through geometric and electrostatic effects interaction with substrates, the properties of the fluid between membranes are shown to potentially enforce concentration gradients of dissolved compounds that may be biologically significant.


Sign in / Sign up

Export Citation Format

Share Document