Does the direct effect of atmospheric CO2 concentration on leaf respiration vary with temperature? Responses in two species of Plantago that differ in relative growth rate

2002 ◽  
Vol 114 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Dan Bruhn ◽  
Teis N. Mikkelsen ◽  
Owen K. Atkin
1994 ◽  
Vol 21 (4) ◽  
pp. 507 ◽  
Author(s):  
H Poorter ◽  
GD Farquhar

Various aspects of the water economy were investigated for a range of herbaceous species varying in relative growth rate. Plants were grown in a growth chamber with a non-limiting supply of water and nutrients, and the rate of transpiration, short-term intercellular CO2 concentration and long-term carbon isotope discrimination (Δ) in the leaves were determined. No correlation was found between the relative growth rate of these species, and the transpiration rate per unit leaf area, the intercellular CO2 concentration and the 13C-discrimination. There was a positive correlation, however, with the rate of water uptake per unit root weight. From these observations we infer that the previously observed differences in photosynthetic nitrogen-use efficiency, the rate of photosynthesis per unit leaf nitrogen, can not be explained by variation in intercellular CO2 concentration. These data were also used to analyse correlations between Δ and both growth parameters and chemical composition. Apart from parameters related to the water economy, Δ only correlated (positively) with the fractional biomass allocation to the roots (root weight ratio) and the specific root length (root length divided by root weight), and not with any other investigated growth parameters.


2021 ◽  
Vol 42 (3(SI)) ◽  
pp. 735-743
Author(s):  
M.N.L. Wahidah ◽  
◽  
M.S. Nizam ◽  
C.M.Z. Che Radziah ◽  
W.A. Wan Juliana ◽  
...  

Aim: To determine the growth responses of two peat swamp forest species, Shorea platycarpa, a shade-tolerant slow-growing species and Macaranga pruinosa, a light-demanding fast-growing species under elevated atmospheric CO2 concentration. Methodology: The saplings of both species were grown in a shade house at ambient (400±50 µmol mol-1) and in an open roof ventilation greenhouse at elevated atmospheric CO2 concentration 800±50 µmol mol-1 for seven months. The temperature in both environments ranged between 25-33°C with 55–60% sunlight transmittance and the saplings were thoroughly watered twice a day. Plants growth measurements were estimated at frequent intervals. Saplings biomass characteristics were examined using destructive methods after seven months of treatment and non-destructive method was used for determination of leaf area. Results: Elevated CO2 enhanced all the growth characteristics in M. pruinosa with a significant increase was observed particularly on both height and diameter relative growth rate and biomass characteristics. The height relative growth rate and leaf area were significantly reduced under elevated CO2 in S. platycarpa but did not affect the shoot or root diameter and biomass significantly. A positive correlation (r =0.77, p>0.05) between stem biomass and basal diameter for plants under elevated CO2 was recorded for M. pruinosa, but not in S. platycarpa. Both species showed negative correlation (S. platycarpa; r = -0.53, M. pruinosa; r = -0.46, p>0.05) between stem growth and stem biomass at elevated CO2. Interpretation: These results unveiled profound effects of elevated CO2 on the growth of light-demanding species M. pruinosa, while shade-tolerant species S. platycarpa was not relatively affected by elevated CO2. This underscored the necessity to analyse different species performance to elevated CO2, thereby improving the ability to predict tropical swamp forest ecosystem responses to rising CO2.


2019 ◽  
Vol 16 (19) ◽  
pp. 3883-3910 ◽  
Author(s):  
Lina Teckentrup ◽  
Sandy P. Harrison ◽  
Stijn Hantson ◽  
Angelika Heil ◽  
Joe R. Melton ◽  
...  

Abstract. Understanding how fire regimes change over time is of major importance for understanding their future impact on the Earth system, including society. Large differences in simulated burned area between fire models show that there is substantial uncertainty associated with modelling global change impacts on fire regimes. We draw here on sensitivity simulations made by seven global dynamic vegetation models participating in the Fire Model Intercomparison Project (FireMIP) to understand how differences in models translate into differences in fire regime projections. The sensitivity experiments isolate the impact of the individual drivers on simulated burned area, which are prescribed in the simulations. Specifically these drivers are atmospheric CO2 concentration, population density, land-use change, lightning and climate. The seven models capture spatial patterns in burned area. However, they show considerable differences in the burned area trends since 1921. We analyse the trajectories of differences between the sensitivity and reference simulation to improve our understanding of what drives the global trends in burned area. Where it is possible, we link the inter-model differences to model assumptions. Overall, these analyses reveal that the largest uncertainties in simulating global historical burned area are related to the representation of anthropogenic ignitions and suppression and effects of land use on vegetation and fire. In line with previous studies this highlights the need to improve our understanding and model representation of the relationship between human activities and fire to improve our abilities to model fire within Earth system model applications. Only two models show a strong response to atmospheric CO2 concentration. The effects of changes in atmospheric CO2 concentration on fire are complex and quantitative information of how fuel loads and how flammability changes due to this factor is missing. The response to lightning on global scale is low. The response of burned area to climate is spatially heterogeneous and has a strong inter-annual variation. Climate is therefore likely more important than the other factors for short-term variations and extremes in burned area. This study provides a basis to understand the uncertainties in global fire modelling. Both improvements in process understanding and observational constraints reduce uncertainties in modelling burned area trends.


Sign in / Sign up

Export Citation Format

Share Document