leaf respiration
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 14)

H-INDEX

41
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Kevin L. Griffin ◽  
Stephanie C. Schmiege ◽  
Sarah G. Bruner ◽  
Natalie T. Boelman ◽  
Lee A. Vierling ◽  
...  

Arctic Treeline is the transition from the boreal forest to the treeless tundra and may be determined by growing season temperatures. The physiological mechanisms involved in determining the relationship between the physical and biological environment and the location of treeline are not fully understood. In Northern Alaska, we studied the relationship between temperature and leaf respiration in 36 white spruce (Picea glauca) trees, sampling both the upper and lower canopy, to test two research hypotheses. The first hypothesis is that upper canopy leaves, which are more directly coupled to the atmosphere, will experience more challenging environmental conditions and thus have higher respiration rates to facilitate metabolic function. The second hypothesis is that saplings [stems that are 5–10cm DBH (diameter at breast height)] will have higher respiration rates than trees (stems ≥10cm DBH) since saplings represent the transition from seedlings growing in the more favorable aerodynamic boundary layer, to trees which are fully coupled to the atmosphere but of sufficient size to persist. Respiration did not change with canopy position, however respiration at 25°C was 42% higher in saplings compared to trees (3.43±0.19 vs. 2.41±0.14μmolm−2 s−1). Furthermore, there were significant differences in the temperature response of respiration, and seedlings reached their maximum respiration rates at 59°C, more than two degrees higher than trees. Our results demonstrate that the respiratory characteristics of white spruce saplings at treeline impose a significant carbon cost that may contribute to their lack of perseverance beyond treeline. In the absence of thermal acclimation, the rate of leaf respiration could increase by 57% by the end of the century, posing further challenges to the ecology of this massive ecotone.


2021 ◽  
Author(s):  
Matthew A. Sturchio ◽  
Jeff Chieppa ◽  
Samantha K. Chapman ◽  
Gabriela Canas ◽  
Michael J. Aspinwall

2021 ◽  
Vol 12 ◽  
Author(s):  
Jefferson Rangel da Silva ◽  
Rodrigo Marcelli Boaretto ◽  
Jéssica Aparecida Lara Lavorenti ◽  
Bruna Castriani Ferreira dos Santos ◽  
Helvecio Della Coletta-Filho ◽  
...  

This study addresses the interactive effects of deficit irrigation and huanglongbing (HLB) infection on the physiological, biochemical, and oxidative stress responses of sweet orange trees. We sought to answer: (i) What are the causes for the reduction in water uptake in HLB infected plants? (ii) Is the water status of plants negatively affected by HLB infection? (iii) What are the key physiological traits impaired in HLB-infected plants? and (iv) What conditions can mitigate both disease severity and physiological/biochemical impairments in HLB-infected plants? Two water management treatments were applied for 11 weeks to 1-year-old-trees that were either healthy (HLB–) or infected with HLB (+) and grown in 12-L pots. Half of the trees were fully irrigated (FI) to saturation, whereas half were deficit-irrigated (DI) using 40% of the water required to saturate the substrate. Our results demonstrated that: reduced water uptake capacity in HLB+ plants was associated with reduced root growth, leaf area, stomatal conductance, and transpiration. Leaf water potential was not negatively affected by HLB infection. HLB increased leaf respiration rates (ca. 41%) and starch synthesis, downregulated starch breakdown, blocked electron transport, improved oxidative stress, and reduced leaf photosynthesis (ca. 57%) and photorespiration (ca.57%). Deficit irrigation reduced both leaf respiration (ca. 45%) and accumulation of starch (ca.53%) by increasing maltose (ca. 20%), sucrose, glucose, and fructose contents in the leaves, decreasing bacterial population (ca. 9%) and triggering a series of protective measures against further impairments in the physiology and biochemistry of HLB-infected plants. Such results provide a more complete physiological and biochemical overview of HLB-infected plants and can guide future studies to screen genetic tolerance to HLB and improve management strategies under field orchard conditions.


2021 ◽  
Vol 4 ◽  
Author(s):  
Daisy C. Souza ◽  
Kolby J. Jardine ◽  
João V. F. C. Rodrigues ◽  
Bruno O. Gimenez ◽  
Alistair Rogers ◽  
...  

Leaf respiration in the dark (Rdark) and light (Rday) is poorly characterized in diverse tropical ecosystems, and little to no information exists on the degree of light suppression in common tree species within the Amazon basin, and their dependences upon plant functional traits and position within the canopy. We quantified Rdark and apparent Rday using the Kok method and measured key leaf traits in 26 tree individuals of different species distributed in three different canopy positions: canopy, lower canopy, and understory. To explore the relationships between the leaf traits we used the standardized major axis (SMA). We found that canopy trees had significantly higher rates of Rdark and Rday than trees in the understory. The difference between Rdark and Rday (the light suppression of respiration) was greatest in the understory (68 ± 9%, 95% CI) and lower canopy (49 ± 9%, 95% CI) when compared to the canopy (37 ± 10%, 95% CI). We also found that Rday was significantly and strongly correlated with Rdark (p < 0.001) for all the canopy positions. Also, leaf mass per area (LMA) and leaf Phosphorus concentration (P) had a significant relationship with Rdark (p < 0.001; p = 0.003), respectively. In addition, a significant relationship was found for LMA in the canopy and lower canopy positions (p = 0.009; p = 0.048) while P was only significant in the canopy (p = 0.044). Finally, no significant relationship was found between Rdark and nitrogen, sugars, and starch. Our results highlight the importance of including representation of the light suppression of leaf respiration in terrestrial biosphere models and also of accounting for vertical gradients within forest canopies and connections with functional traits.


2021 ◽  
Author(s):  
Kevin L Griffin ◽  
Stephanie C Schmeige ◽  
Sarah G Bruner ◽  
Natalie T Boelman ◽  
Lee A Vierling ◽  
...  

Arctic Treeline is the transition from the boreal forest to the treeless tundra and may be determined by growing season temperatures. The physiological mechanisms involved in determining the relationship between the physical and biological environment and the location of treeline are not fully understood. In Northern Alaska we studied the relationship between temperature and leaf respiration in 36 white spruce (Picea glauca) trees, sampling both the upper and lower canopy, to test two research hypotheses (H0). The first H01 is that canopy position will not influence leaf respiration. The associated alternative hypothesis (HA) is that the upper canopy leaves which are more directly coupled to the atmosphere will experience more challenging environmental conditions and thus have higher respiration rates to facilitate metabolic function. The second H02 is that tree size will not influence leaf respiration. The associated HA is that saplings (stems that are 5-10 cm DBH (diameter at breast height)) will have higher respiration rates than trees (stems ≥ 10 cm DBH) since saplings represent the transition from seedlings growing in the more favorable aerodynamic boundary layer, to trees which are fully coupled to the atmosphere but of sufficient size to persist. Respiration did not change with canopy position, however respiration at 25°C was 42% higher in saplings compared to trees (3.43 ± 0.19 vs. 2.41 ± 0.14 μmol m-2s-1). Furthermore, there were significant differences in the temperature response of respiration, and seedlings reached their maximum respiration rates at 59°C, more than two degrees higher than trees. Our results demonstrate that the respiratory characteristics of white spruce saplings at treeline are extreme, imposing a significant carbon cost that may contribute to their lack of perseverance beyond treeline. In the absence of thermal acclimation, the rate of leaf respiration could increase by 57% by the end of the century, posing further challenges to the ecology of this massive ecotone.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1302
Author(s):  
Elena Ikkonen ◽  
Svetlana Chazhengina ◽  
Olga Bakhmet ◽  
Valeria Sidorova

For agricultural soils with low natural fertility, the possibility of using rock powders as an alternative source of nutrients and/or improver of soil physical parameters is under discussion and study. Shungite rocks, carbon-bearing volcanic sedimentary rock, are characterized by a high content of carbon and nutrients. This study aimed to evaluate whether shungite application to Umbric Podzols may affect leaf and root mitochondrial respiratory pathways, and the leaf response to temperature change. A pot culture experiment was conducted with Allium cepa L. seedlings, using soil shungite concentrations of 0, 5, 10, and 20 g kg−1 and two soil water regimes: well-watered (WW) and drying-wetting (DW) cycles. Soil water deficit increased total respiration (Vt) of onion leaves, but not roots, under low (13 °C) and high (33 °C) measurement temperature. Shungite application affected leaf Vt only at 13 °C: it increased the Vt rate under WW and decreased one under DW. An increase in the measurement temperature to 33 °C enhanced the sensitivity of leaf respiration to the inhibitor of the alternative respiratory pathway (salicylhydroxamic acid, SHAM). Shungite application increased the contribution of SHAM-sensitive pathway to the leaf Vt rate under WW, but not under the DW regime, regardless of the leaf temperature. In contrast to the SHAM-resistant pathway, the temperature sensitivity of the SHAM-sensitive rate decreased following the decrease in soil water availability. Shungite application increased the temperature sensitivity of both SHAM-sensitive and SHAM-resistant pathways under DW, and significantly decreased these parameters under WW. In summary, the decrease in temperature sensitivity of alternative SHAM-sensitive respiratory pathway with a decrease of soil water availability or shungite-related decrease of both SHAM-sensitive and SHAM-resistant leaf respiration may play an important role in enhancing the resistance of plant respiration to stress temperature.


2021 ◽  
Author(s):  
Andrew P. Scafaro ◽  
Yuzhen Fan ◽  
Bradley C. Posch ◽  
Andres Garcia ◽  
Onoriode Coast ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 ◽  
Author(s):  
Man Xu ◽  
Lìyǐn L. Liáng ◽  
Miko U. F. Kirschbaum ◽  
Shuyi Fang ◽  
Yina Yu

Plant leaf respiration is one of the critical components of the carbon cycle in terrestrial ecosystems. To predict changes of carbon emissions from leaves to the atmosphere under a warming climate, it is, therefore, important to understand the thermodynamics of the temperature response of leaf respiration. In this study, we measured the short-term temperature response of leaf respiration from five different urban tree species in a subtropical region of southern China. We applied two models, including an empirical model (the Kavanau model) and a mechanistic model (Macromolecular Rate Theory, MMRT), to investigate the thermodynamic properties in different plant species. Both models are equivalent in fitting measurements of the temperature response of leaf respiration with no significant difference (p = 0.67) in model efficiency, while MMRT provides an easy way to determine the thermodynamic properties, i.e., enthalpy, entropy, and Gibbs free energy of activation, for plant respiration. We found a conserved temperature response in the five studied plant species, showing no difference in thermodynamic properties and the relative temperature sensitivity for different species at low temperatures (<42°C). However, divergent temperature response among species happened at high temperatures over 42°C, showing more than two-fold differences in relative respiration rate compared to that below 42°C, although the causes of the divergent temperature response remain unclear. Notably, the convergent temperature response at low temperatures could provide useful information for land surface models to improve predictions of climate change effects on plant respiration.


2020 ◽  
Vol 229 (3) ◽  
pp. 1312-1325 ◽  
Author(s):  
Lingling Zhu ◽  
Keith J. Bloomfield ◽  
Shinichi Asao ◽  
Mark G. Tjoelker ◽  
John J.G. Egerton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document