Myasthenia gravis after allogeneic bone marrow transplantation treated with mycophenolate mofetil monitored by peripheral blood OX40+CD4+T cells

2002 ◽  
Vol 69 (5-6) ◽  
pp. 318-320 ◽  
Author(s):  
Ai Kotani ◽  
Atsushi Takahashi ◽  
Hikari Koga ◽  
Rinpei Morita ◽  
Hidenao Fukuyama ◽  
...  
Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1196-1200 ◽  
Author(s):  
A Velardi ◽  
A Terenzi ◽  
S Cucciaioni ◽  
R Millo ◽  
CE Grossi ◽  
...  

Abstract Peripheral blood T cell subsets were evaluated in 11 patients during the reconstitution phase after allogeneic bone marrow transplantation and compared with 11 age-matched controls. The proportion of cells coexpressing Leu7 and CD11b (C3bi receptor) markers was determined within the CD4+ (T-helper) and the CD8+ (T-suppressor) subsets by two- color immunofluorescence analysis. CD4+ and CD8+ T cells reached normal or near-normal values within the first year posttransplant. In contrast to normal controls, however, most of the cells in both subsets coexpressed the Leu7 and CD11b markers. T cells with such phenotype display the morphological features of granular lymphocytes (GLs) and a functional inability to produce interleukin 2 (IL 2). These T cell imbalances were not related to graft v host disease (GvHD) or to clinically detectable virus infections and may account for some defects of cellular and humoral immunity that occur after bone marrow transplantation./


Blood ◽  
1988 ◽  
Vol 71 (5) ◽  
pp. 1196-1200 ◽  
Author(s):  
A Velardi ◽  
A Terenzi ◽  
S Cucciaioni ◽  
R Millo ◽  
CE Grossi ◽  
...  

Peripheral blood T cell subsets were evaluated in 11 patients during the reconstitution phase after allogeneic bone marrow transplantation and compared with 11 age-matched controls. The proportion of cells coexpressing Leu7 and CD11b (C3bi receptor) markers was determined within the CD4+ (T-helper) and the CD8+ (T-suppressor) subsets by two- color immunofluorescence analysis. CD4+ and CD8+ T cells reached normal or near-normal values within the first year posttransplant. In contrast to normal controls, however, most of the cells in both subsets coexpressed the Leu7 and CD11b markers. T cells with such phenotype display the morphological features of granular lymphocytes (GLs) and a functional inability to produce interleukin 2 (IL 2). These T cell imbalances were not related to graft v host disease (GvHD) or to clinically detectable virus infections and may account for some defects of cellular and humoral immunity that occur after bone marrow transplantation./


Blood ◽  
2012 ◽  
Vol 119 (24) ◽  
pp. 5898-5908 ◽  
Author(s):  
Renee J. Robb ◽  
Katie E. Lineburg ◽  
Rachel D. Kuns ◽  
Yana A. Wilson ◽  
Neil C. Raffelt ◽  
...  

Abstract FoxP3+ confers suppressive properties and is confined to regulatory T cells (Treg) that potently inhibit autoreactive immune responses. In the transplant setting, natural CD4+ Treg are critical in controlling alloreactivity and the establishment of tolerance. We now identify an important CD8+ population of FoxP3+ Treg that convert from CD8+ conventional donor T cells after allogeneic but not syngeneic bone marrow transplantation. These CD8+ Treg undergo conversion in the mesenteric lymph nodes under the influence of recipient dendritic cells and TGF-β. Importantly, this population is as important for protection from GVHD as the well-studied natural CD4+FoxP3+ population and is more potent in exerting class I–restricted and antigen-specific suppression in vitro and in vivo. Critically, CD8+FoxP3+ Treg are exquisitely sensitive to inhibition by cyclosporine but can be massively and specifically expanded in vivo to prevent GVHD by coadministering rapamycin and IL-2 antibody complexes. CD8+FoxP3+ Treg thus represent a new regulatory population with considerable potential to preferentially subvert MHC class I–restricted T-cell responses after bone marrow transplantation.


Blood ◽  
2018 ◽  
Vol 132 (22) ◽  
pp. 2351-2361 ◽  
Author(s):  
Lauren P. McLaughlin ◽  
Rayne Rouce ◽  
Stephen Gottschalk ◽  
Vicky Torrano ◽  
George Carrum ◽  
...  

Abstract There is a Blood Commentary on this article in this issue.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 873-885 ◽  
Author(s):  
Margot Zöller ◽  
Annette Schmidt ◽  
Angela Denzel ◽  
Jürgen Moll

Abstract Constitutive expression of a rat CD44 variant isoform, rCD44v4-v7, on murine T cells accelerates immune responsiveness. Because prolonged immunodeficiency can be a major drawback in allogeneic bone marrow transplantation, we considered it of special interest to see whether repopulation of lethally irradiated syngeneic and allogeneic mice may be influenced by constitutive expression of the rCD44v4-v7 transgene. When lethally irradiated syngeneic and allogeneic mice were reconstituted with bone marrow cells (BMC) from rCD44v4-v7 transgenic (TG) or nontransgenic (NTG) mice, the former had a clear repopulation advantage: thymocytes expanded earlier after reconstitution and, as a consequence, higher numbers of lymphocytes were recovered from spleen and lymph nodes. Lymphocytes also displayed functional activity in advance to those from mice reconstituted with BMC from NTG mice. Most importantly, after the transfer of BMC from TG mice into an allogeneic host, the frequency of host-reactive T cells decreased rapidly. Apparently, this was due to accelerated induction of tolerance. Because these effects were counterregulated by an rCD44v6-specific antibody, it is likely that they could be attributed to the rCD44v4-v7 TG product. Thus, expression of a CD44 variant isoform at high levels facilitated reconstitution with allogeneic BMC by accelerated establishment of tolerance and the regaining of immunocompetence.


Sign in / Sign up

Export Citation Format

Share Document