Successful induction of immune responses against mutant ras in melanoma patients using intradermal injection of peptides and GM-CSF as adjuvant

2001 ◽  
Vol 10 (3) ◽  
pp. 161-167 ◽  
Author(s):  
R. E. Hunger ◽  
C. U. Brand ◽  
M. Streit ◽  
J. A. Eriksen ◽  
M. K. Gjertsen ◽  
...  
2021 ◽  
Vol 7 (3) ◽  
pp. eabd4235
Author(s):  
P. Pradhan ◽  
R. Toy ◽  
N. Jhita ◽  
A. Atalis ◽  
B. Pandey ◽  
...  

Innate immune responses to pathogens are driven by co-presentation of multiple pathogen-associated molecular patterns (PAMPs). Combinations of PAMPs can trigger synergistic immune responses, but the underlying molecular mechanisms of synergy are poorly understood. Here, we used synthetic particulate carriers co-loaded with monophosphoryl lipid A (MPLA) and CpG as pathogen-like particles (PLPs) to dissect the signaling pathways responsible for dual adjuvant immune responses. PLP-based co-delivery of MPLA and CpG to GM-CSF–driven mouse bone marrow–derived antigen-presenting cells (BM-APCs) elicited synergistic interferon-β (IFN-β) and interleukin-12p70 (IL-12p70) responses, which were strongly influenced by the biophysical properties of PLPs. Mechanistically, we found that MyD88 and interferon regulatory factor 5 (IRF5) were necessary for IFN-β and IL-12p70 production, while TRIF signaling was required for the synergistic response. Both the kinetics and magnitude of downstream TRAF6 and IRF5 signaling drove the synergy. These results identify the key mechanisms of synergistic Toll-like receptor 4 (TLR4)–TLR9 co-signaling in mouse BM-APCs and underscore the critical role of signaling kinetics and biophysical properties on the integrated response to combination adjuvants.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Marita Chakhtoura ◽  
Uma Sriram ◽  
Michelle Heayn ◽  
Joshua Wonsidler ◽  
Christopher Doyle ◽  
...  

Sex hormones affect immune responses and might promote autoimmunity. Endocrine disrupting chemicals such as bisphenol A (BPA) may mimic their immune effects. Conventional dendritic cells (cDCs) are pivotal initiators of immune responses upon activation by danger signals coming from pathogens or distressed tissues through triggering of the Toll-like receptors (TLRs). We generated in vitro murine cDCs in the absence of estrogens and measured the effects of exogenously added estrogen or BPA on their differentiation and activation by the TLR ligands LPS and CpG. Estrogen enhanced the differentiation of GM-CSF-dependent cDCs from bone marrow precursors in vitro, and the selective estrogen receptor modulators (SERMs) tamoxifen and fulvestrant blocked these effects. Moreover, estrogen augmented the upregulation of costimulatory molecules and proinflammatory cytokines (IL-12p70 and TNFα) upon stimulation by TLR9 ligand CpG, while the response to LPS was less estrogen-dependent. These effects are partially explained by an estrogen-dependent regulation of TLR9 expression. BPA did not promote cDC differentiation nor activation upon TLR stimulation. Our results suggest that estrogen promotes immune responses by increasing DC activation, with a preferential effect on TLR9 over TLR4 stimulation, and highlight the influence of estrogens in DC cultures, while BPA does not mimic estrogen in the DC functions that we tested.


1999 ◽  
Vol 9 (3) ◽  
pp. 327
Author(s):  
K. A. Foon ◽  
O. Kashala ◽  
J. Garrison ◽  
R. A. Reisfeld ◽  
A. Teitelbaum ◽  
...  

2003 ◽  
Vol 71 (1) ◽  
pp. 365-373 ◽  
Author(s):  
Tong-Jun Lin ◽  
Lauren H. Maher ◽  
Kaede Gomi ◽  
Jeffrey D. McCurdy ◽  
Rafael Garduno ◽  
...  

ABSTRACT Mast cells are important as sentinel cells in host defense against bacterial infection. Much of their effectiveness depends upon recruiting other immune cells; however, little is known about the mechanisms of this response. CCL20, also known as macrophage inflammatory protein-3α (MIP-3α), Exodus, and LARC, is a chemokine known to be a potent chemoattractant for immature dendritic cells and T cells. In this study, we examined the human mast cell production of both CCL20 and granulocyte-macrophage colony-stimulating factor (GM-CSF), a critical cytokine for innate immune responses in the lung, in response to Pseudomonas aeruginosa. Reverse transcription-PCR and Western blot analysis demonstrated that the human mast cells (HMC-1) express CCL20 mRNA and are able to produce a significant amount (32.4 ng/ml) of CCL20 protein following stimulation by calcium ionophore and phorbol myristate acetate. Importantly, P. aeruginosa potently stimulated CCL20 production in human cord blood-derived mast cells (CBMC), with production peaking at 6 h after stimulation. This time course of expression was distinct from that of GM-CSF, which peaked after 24 to 48 h. Significant CCL20 production did not occur following immunoglobulin E-mediated activation of CBMC under conditions which induced a substantial GM-CSF response. Interestingly, the CCL20 response of mast cells to P. aeruginosa was relatively resistant to inhibition by the corticosteroid dexamethasone, interleukin-10, or cyclosporine, while GM-CSF production was potently inhibited. However, P. aeruginosa-induced CCL20 production was blocked by the protein kinase C (PKC) inhibitor Ro 31-8220 and a PKC pseudosubstrate. These results support a role for human mast cells in the initiation of immune responses to P. aeruginosa infection.


2021 ◽  
Vol 118 (45) ◽  
pp. e2110817118
Author(s):  
Dengning Xia ◽  
Rui Jin ◽  
Gaurav Byagathvalli ◽  
Huan Yu ◽  
Ling Ye ◽  
...  

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other pathogens with pandemic potential requires safe, protective, inexpensive, and easily accessible vaccines that can be developed and manufactured rapidly at a large scale. DNA vaccines can achieve these criteria, but induction of strong immune responses has often required bulky, expensive electroporation devices. Here, we report an ultra-low-cost (<1 USD), handheld (<50 g) electroporation system utilizing a microneedle electrode array (“ePatch”) for DNA vaccination against SARS-CoV-2. The low cost and small size are achieved by combining a thumb-operated piezoelectric pulser derived from a common household stove lighter that emits microsecond, bipolar, oscillatory electric pulses and a microneedle electrode array that targets delivery of high electric field strength pulses to the skin’s epidermis. Antibody responses against SARS-CoV-2 induced by this electroporation system in mice were strong and enabled at least 10-fold dose sparing compared to conventional intramuscular or intradermal injection of the DNA vaccine. Vaccination was well tolerated with mild, transient effects on the skin. This ePatch system is easily portable, without any battery or other power source supply, offering an attractive, inexpensive approach for rapid and accessible DNA vaccination to combat COVID-19, as well as other epidemics.


2014 ◽  
Vol 15 (1) ◽  
Author(s):  
Kyung Hee Noh ◽  
Yeong Min Park ◽  
Hyuk Soon Kim ◽  
Tae Heung Kang ◽  
Kwon-Ho Song ◽  
...  

2011 ◽  
Vol 108 (6) ◽  
pp. 2390-2395 ◽  
Author(s):  
T. Willinger ◽  
A. Rongvaux ◽  
H. Takizawa ◽  
G. D. Yancopoulos ◽  
D. M. Valenzuela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document