Increased carbon emissions from tropical forest degradation

AccessScience ◽  
2017 ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. 034017 ◽  
Author(s):  
Timothy R H Pearson ◽  
Sandra Brown ◽  
Felipe M Casarim

2016 ◽  
Vol 6 (1) ◽  
pp. 1-12
Author(s):  
Tilak Prasad Gautam ◽  
Tej Narayan Mandal

The disappearance of global tropical forests due to deforestation and forest degradation has reduced the biodiversity and carbon sequestration capacity. In these contexts, present study was carried out to understand the species composition and density in the undisturbed and disturbed stands of moist tropical forest located in Sunsari district of eastern Nepal. Study revealed that the forest disturbance has reduced the number of tree species by 33% and tree density by 50%. In contrary, both number and density of herb and shrub species have increased with forest disturbance.


Author(s):  
Julie Betbeder ◽  
Damien Arvor ◽  
Lilian Blanc ◽  
Guillaume Cornu ◽  
Clement Bourgoin ◽  
...  

2019 ◽  
Vol 25 (9) ◽  
pp. 2855-2868 ◽  
Author(s):  
Paulo M. Brando ◽  
Divino Silvério ◽  
Leonardo Maracahipes‐Santos ◽  
Claudinei Oliveira‐Santos ◽  
Shaun R. Levick ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 1829
Author(s):  
Tatiana Nazarova ◽  
Pascal Martin ◽  
Gregory Giuliani

Forests play major roles in climate regulation, ecosystem services, carbon storage, biodiversity, terrain stabilization, and water retention, as well as in the economy of numerous countries. Nevertheless, deforestation and forest degradation are rampant in many parts of the world. In particular, the Amazonian rainforest faces the constant threats posed by logging, mining, and burning for agricultural expansion. In Brazil, the “Sete de Setembro Indigenous Land”, a protected area located in a lowland tropical forest region at the border between the Mato Grosso and Rondônia states, is subject to illegal deforestation and therefore necessitates effective vegetation monitoring tools. Optical satellite imagery, while extensively used for landcover assessment and monitoring, is vulnerable to high cloud cover percentages, as these can preclude analysis and strongly limit the temporal resolution. We propose a cloud computing-based coupled detection strategy using (i) cloud and cloud shadow/vegetation detection systems with Sentinel-2 data analyzed on the Google Earth Engine with deep neural network classification models, with (ii) a classification error correction and vegetation loss and gain analysis tool that dynamically compares and updates the classification in a time series. The initial results demonstrate that such a detection system can constitute a powerful monitoring tool to assist in the prevention, early warning, and assessment of deforestation and forest degradation in cloudy tropical regions. Owing to the integrated cloud detection system, the temporal resolution is significantly improved. The limitations of the model in its present state include classification issues during the forest fire period, and a lack of distinction between natural vegetation loss and anthropogenic deforestation. Two possible solutions to the latter problem are proposed, namely, the mapping of known agricultural and bare areas and its subsequent removal from the analyzed data, or the inclusion of radar data, which would allow a large amount of finetuning of the detection processes.


2015 ◽  
Vol 36 (11) ◽  
pp. 2786-2799 ◽  
Author(s):  
Martin Enrique Romero-Sanchez ◽  
Raul Ponce-Hernandez ◽  
Steven E. Franklin ◽  
Carlos Arturo Aguirre-Salado

Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 770
Author(s):  
Guifang Liu ◽  
Qing Liu ◽  
Mengxiao Song ◽  
Junsheng Chen ◽  
Chuanrong Zhang ◽  
...  

Research Highlights: Our findings highlight that the contribution of carbon sequestration from plantations to REDD+ will remain limited, and that opportunity costs in Southeast Asia will likely increase, due to future oil palm expansion. Background and Objectives: Land use, land-use change, and forestry (LULUCF) are significant sources of carbon emissions. The United Nations Framework Convention on Climate Change (UNFCCC) agreed that the Reducing Emissions from Deforestation and Forest Degradation Plus program, also known as REDD+, could contribute to carbon sinks in tropical regions. These reductions could serve as carbon credits that offset emissions from other sources. Materials and Methods: This study uses the cellular automaton technique to simulate the business-as-usual (BAU) scenario and the gain-loss method, to measure carbon emissions resulting from forest conversion. The output of the integration of the models makes it possible to evaluate one of the most important financial costs: opportunity costs. Two scenarios (with and without consideration of carbon sequestration) in rubber and oil palm plantations are examined. Results: A sensitivity assessment in Kalimantan, Indonesia, shows that carbon sequestration from plantations affects value of opportunity costs less than social discount rates. Further analysis suggests that oil palm plantations have a greater impact than rubber plantations. Conclusions: Our study provides a case that can be applied to other regions for evaluating the impacts of plantation carbon sequestration, and insights that can help local policymakers design a financially attractive REDD+ program in other forest areas of the world.


Sign in / Sign up

Export Citation Format

Share Document