The effects of high altitude on choice reaction time mean and intra-individual variability: Results of the Edinburgh Altitude Research Expedition of 2008.

2010 ◽  
Vol 24 (3) ◽  
pp. 391-401 ◽  
Author(s):  
Dominika Dykiert ◽  
David Hall ◽  
Nikki van Gemeren ◽  
Richard Benson ◽  
Geoff Der ◽  
...  
2021 ◽  
Vol 11 (5) ◽  
pp. 669
Author(s):  
Paweł Krukow ◽  
Małgorzata Plechawska-Wójcik ◽  
Arkadiusz Podkowiński

Aggrandized fluctuations in the series of reaction times (RTs) are a very sensitive marker of neurocognitive disorders present in neuropsychiatric populations, pathological ageing and in patients with acquired brain injury. Even though it was documented that processing inconsistency founds a background of higher-order cognitive functions disturbances, there is a vast heterogeneity regarding types of task used to compute RT-related variability, which impedes determining the relationship between elementary and more complex cognitive processes. Considering the above, our goal was to develop a relatively new assessment method based on a simple reaction time paradigm, conducive to eliciting a controlled range of intra-individual variability. It was hypothesized that performance variability might be induced by manipulation of response-stimulus interval’s length and regularity. In order to verify this hypothesis, a group of 107 healthy students was tested using a series of digitalized tasks and their results were analyzed using parametric and ex-Gaussian statistics of RTs distributional markers. In general, these analyses proved that intra-individual variability might be evoked by a given type of response-stimulus interval manipulation even when it is applied to the simple reaction time task. Collected outcomes were discussed with reference to neuroscientific concepts of attentional resources and functional neural networks.


1970 ◽  
Vol 31 (2) ◽  
pp. 343-348 ◽  
Author(s):  
Jerry W. Thornton ◽  
Paul D. Jacobs

Two tasks (simple and choice reaction time) were examined while varying three types of stressors (shock, threat of shock, and noise) and the stressor task relationship (i.e., task-related stress, task-unrelated stress, and no-stress). Four specific hypotheses were tested and 3 were supported in the simple reaction-time task. There were no significant differences among stressors for either task, although greater differences were reported in the simple than in the choice reaction-time task. A significant difference between the “task-relatedness” of stress levels in the simple task was interpreted as possibly due to a “coping” or “protective adaptive mechanism” in which increases in performance serve to reduce stress. Practical applications were examined.


Sign in / Sign up

Export Citation Format

Share Document