Neural System Interactions Within the Context of Learning and Memory: Hippocampal and Prefrontal Cortx Single Neurons Exhibit Different Patterns of Activity During Trace Eyeblink Conditioning

2003 ◽  
Author(s):  
John Disterhoft
2001 ◽  
Vol 86 (4) ◽  
pp. 1839-1857 ◽  
Author(s):  
Matthew D. McEchron ◽  
Aldis P. Weible ◽  
John F. Disterhoft

Rabbit trace eyeblink conditioning is a hippocampus-dependent task in which the auditory conditioned stimulus (CS) is separated from the corneal airpuff unconditioned stimulus (US) by a 500-ms empty trace interval. Young rabbits are able to associate the CS and US and acquire trace eyeblink conditioned responses (CRs); however, a subset of aged rabbits show poor learning on this task. Several studies have shown that CA1-hippocampal activity is altered by aging; however, it is unknown how aging affects the interaction of CA1 single neurons within local ensembles during learning. The present study examined the extracellular activity of CA1 pyramidal neurons within local ensembles in aged (29–34 mo) and young (3–6 mo) rabbits during 10 daily sessions (80 trials/session) of trace eyeblink conditioning. A single surgically implanted nonmovable stereotrode was used to record ensembles ranging in size from 2 to 12 separated single neurons. A total of six young and four aged rabbits acquired significant levels of CRs, whereas five aged rabbits showed very few CRs similar to a group of five young pseudoconditioned rabbits. Pyramidal cells (2,159 total) were recorded from these four groups during training. Increases in CA1 pyramidal cell firing to the CS and US were diminished in the aged nonlearners. Local ensembles from all groups contained heterogeneous types of pyramidal cell responses. Some cells showed increases while others showed decreases in firing during the trace eyeblink trial. Hierarchical clustering was used to isolate seven different classes of single-neuron responses that showed unique firing patterns during the trace conditioning trial. The proportion of cells in each group was similar for six of seven response classes. Unlike the excitatory modeling patterns reported in previous studies, three of seven response types (67% of recorded cells) exhibited some type of inhibitory decrease to the CS, US, or both. The single-neuron response classes showed different patterns of learning-related activity across training. Several of the single-neuron types from the aged nonlearners showed unique alterations in response magnitude to the CS and US. Cross-correlation analyses suggest that specific single-neuron types provide more correlated single-neuron activity to the ensemble processing of information. However, aged nonlearners showed a significantly lower level of coincident pyramidal cell firing for all cell types within local ensembles in CA1.


Author(s):  
Wei-Wei Zhang ◽  
Rong-Rong Li ◽  
Jie Zhang ◽  
Jie Yan ◽  
Qian-Hui Zhang ◽  
...  

AbstractWhile the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.


Sign in / Sign up

Export Citation Format

Share Document