Visual Word Recognition of Monosyllabic Monomorphemic French Words: New Evidence From Lexical Decision, Naming, and Progressive Demasking

2008 ◽  
Author(s):  
Ludovic Ferrand ◽  
Patrick Bonin ◽  
Alain Meot ◽  
Maria Augustinova ◽  
Boris New ◽  
...  
2010 ◽  
Vol 22 (5) ◽  
pp. 669-694 ◽  
Author(s):  
Stéphane Dufau ◽  
Bernard Lété ◽  
Claude Touzet ◽  
Hervé Glotin ◽  
Johannes C. Ziegler ◽  
...  

2009 ◽  
Vol 4 (2) ◽  
pp. 159-193 ◽  
Author(s):  
Robert Fiorentino ◽  
Ella Fund-Reznicek

Recent masked priming studies suggest that complex words are rapidly segmented into potential morphological constituents during initial visual word recognition. Much of this evidence involves affixation or other formally regular operations, leaving open the question of whether these effects rely heavily on the identification of a closed-class affix or other formal regularity. In two masked priming experiments with English transparent and opaque bimorphemic compound primes consisting solely of open-class morphemes, we find significant constituent priming, but no significant priming for purely orthographic overlap. We conclude that masked morphological priming generalizes across word-formation types to include compounds with no affix or other regular form. These results provide new evidence for across-the-board morphological-level segmentation during visual word recognition and for morpheme-based compound processing.


Psihologija ◽  
2010 ◽  
Vol 43 (1) ◽  
pp. 103-116 ◽  
Author(s):  
Jelena Havelka ◽  
Clive Frankish

Case mixing is a technique that is used to investigate the perceptual processes involved in visual word recognition. Two experiments examined the effect of case mixing on lexical decision latencies. The aim of these experiments was to establish whether different case mixing patterns would interact with the process of appropriate visual segmentation and phonological assembly in word reading. In the first experiment, case mixing had a greater effect on response times to words when it led to visual disruption of the multi-letter graphemes (MLGs) as well as the overall word shape (e.g. pLeAd), compared to when it disrupted overall word shape only (e.g. plEAd). A second experiment replicated this finding with words in which MLGs represent either the vowel (e.g. bOaST vs. bOAst) or the consonant sound (e.g. sNaCK vs. sNAcK). These results confirm that case mixing can have different effect depending on the type of orthographic unit that is broken up by the manipulation. They demonstrate that graphemes are units that play an important role in visual word recognition, and that manipulation of their presentation by case mixing will have a significant effect on response latencies to words in a lexical decision task. As such these findings need to be taken into account by the models of visual word recognition.


2018 ◽  
Vol 71 (8) ◽  
pp. 1645-1654 ◽  
Author(s):  
Lauren Heathcote ◽  
Kate Nation ◽  
Anne Castles ◽  
Elisabeth Beyersmann

Much research suggests that words comprising more than one morpheme are decomposed into morphemes in the early stages of visual word recognition. In the present masked primed lexical decision study, we investigated whether or not decomposition occurs for both prefixed and suffixed nonwords and for nonwords which comprise a stem and a non-morphemic ending. Prime–target relatedness was manipulated in three ways: (1) primes shared a semantically transparent morphological relationship with the target (e.g., subcheap-CHEAP, cheapize-CHEAP); (2) primes comprised targets and non-affixal letter strings (e.g., blacheap-CHEAP, cheapstry-CHEAP); and (3) primes were real, complex words unrelated to the target (e.g., miscall-CHEAP, idealism-CHEAP). Both affixed and non-affixed nonwords significantly facilitated the recognition of their stem targets, suggesting that embedded stems are activated independently of whether they are accompanied by a real affix or a non-affix. There was no difference in priming between stems being embedded in initial and final string positions, indicating that embedded stem activation is position-independent. Finally, more priming was observed in the semantically interpretable affixed condition than in the non-affixed condition, which points to a semantic licensing mechanism during complex novel word processing.


2003 ◽  
Vol 10 (2) ◽  
pp. 405-414 ◽  
Author(s):  
Martha Anne Roberts ◽  
Kathleen Rastle ◽  
Max Coltheart ◽  
Derek Besner

Sign in / Sign up

Export Citation Format

Share Document