EEG abnormality in patients at risk for Alzheimer's disease

2006 ◽  
Author(s):  
Karin van der Hiele
1999 ◽  
Vol 14 (1) ◽  
pp. 139-139
Author(s):  
J. S. Paulsen ◽  
B. M. Turner ◽  
T. Statler-Cowen ◽  
R. Romero ◽  
D. P. Salmon ◽  
...  

2014 ◽  
Vol 5 ◽  
pp. S105
Author(s):  
K. Sheardova ◽  
O. Hromkova ◽  
D. Hudecek ◽  
M. Urbanova ◽  
R. Marciniak ◽  
...  

Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 592 ◽  
Author(s):  
Jacek Jasiecki ◽  
Bartosz Wasąg

Late-onset Alzheimer’s disease (AD) is clinically characterized by a progressive decline of memory and other cognitive functions leading to the loss of the ability to perform everyday activities. Only a few drugs have been approved to treat AD dementia over the past century since the first AD patient was diagnosed. Drugs increasing the availability of neurotransmitters at synapses in the brain are used clinically in the treatment of AD dementia, and cholinesterase inhibitors (ChEIs) are the mainstay of the therapy. A detrimental effect on cognitive function has been reported in patients with pharmacological inhibition of acetylcholinesterase (AChE) by ChEIs and reduced butyrylcholinesterase (BChE) activity due to the single nucleotide polymorphisms. The BChE K-variant (rs1803274), the most common genetic variant of the BCHE gene, was thought to reduce enzyme activity reflecting the lower clinical response to rivastigmine in AD patients. During ChEIs therapy, patients carrying reduced-activity BChE do not present such improved attention like patients with the wild-type enzyme. On the other hand, alterations in the BCHE gene causing enzyme activity reduction may delay AD onset in patients at risk by preserving the level of cortical acetylcholine (ACh). Based on our previous results, we conclude that SNPs localized outside of the coding sequence, in 5’UTR (rs1126680) and/or intron 2 (rs55781031) of the BCHE gene, but not solely K-variant alteration (p.A539T) itself, are responsible for reduced enzyme activity. Therefore, we suspect that not BChE-K itself, but these coexisting SNPs (rs1126680 and rs55781031), could be associated with deleterious changes in cognitive decline in patients treated with ChEIs. Based on the results, we suggest that SNPs (rs1126680) and/or (rs55781031) genotyping should be performed to identify subjects at risk for lowered efficacy ChEIs therapy, and such patients should be treated with a lower rivastigmine dosage. Finally, our sequence analysis of the N-terminal end of N-BChE revealed evolutionarily conserved amino acid residues that can be involved in disulfide bond formation and anchoring of N-BChE in the cell membrane.


Author(s):  
N. Saif ◽  
P. Yan ◽  
K. Niotis ◽  
O. Scheyer ◽  
A. Rahman ◽  
...  

Background: Alzheimer’s disease (AD) is the most common and most costly chronic neurodegenerative disease globally. AD develops over an extended period prior to cognitive symptoms, leaving a “window of opportunity” for targeted risk-reduction interventions. Further, this pre-dementia phase includes early physiological changes in sleep and autonomic regulation, for which wearable biosensor devices may offer a convenient and cost-effective method to assess AD-risk. Methods: Patients with a family history of AD and no or minimal cognitive complaints were recruited from the Alzheimer’s Prevention Clinic at Weill Cornell Medicine & New York-Presbyterian. Of the 40 consecutive patients screened, 34 (85%) agreed to wear a wearable biosensor device (WHOOP). One subject (2.5%) lost the device prior to data collection. Of the remaining subjects, 24 were classified as normal cognition and were asymptomatic, 6 were classified as subjective cognitive decline, and 3 were amyloid-positive (one with pre-clinical AD, one with pre-clinical Lewy-Body Dementia, and one with mild cognitive impairment due to AD). Sleep-cycle, autonomic (heart rate variability [HRV]) and activity measures were collected via WHOOP. Blood biomarkers and neuropsychological testing sensitive to cognitive changes in pre-clinical AD were obtained. Participants completed surveys assessing their sleep-patterns, exercise habits, and attitudes towards WHOOP. The goal of this prospective observational study was to determine the feasibility of using a wrist-worn biosensor device in patients at-risk for AD dementia. Unsupervised machine learning was performed to first separate participants into distinct phenotypic groups using the multivariate biometric data. Additional statistical analyses were conducted to examine correlations between individual biometric measures and cognitive performance. Results: 27 (81.8%) participants completed the follow-up surveys. Twenty-four participants (88.9%) were satisfied with WHOOP after six months, and twenty-three (85.2%) wanted to continue wearing WHOOP. K-means clustering separated participants into two groups. Group 1 was older, had lower HRV, and spent more time in slow-wave sleep (SWS) than Group 2. Group 1 performed better on two cognitive tests assessing executive function: Flanker Inhibitory Attention/Control (FIAC) (p=.031), and Dimensional Change Card Sort (DCCS) (p=.061). In Group 1, DCCS was correlated with SWS (ρ=.68, p=0.024) and HRV (ρ=.6, p=0.019). In Group 2, DCCS was correlated with HRV (ρ=.55, p=0.018). There were no significant differences in blood biomarkers between the two groups. Conclusions: Wearable biosensor devices may be a feasible tool to assess AD-related physiological changes. Longitudinal collection of sleep and HRV data may potentially be a non-invasive method for monitoring cognitive changes related to pre-clinical AD. Further study is warranted in larger populations.


Sign in / Sign up

Export Citation Format

Share Document