Supplemental Material for Early Selection Versus Late Correction: Age-Related Differences in Controlling Working Memory Contents

2016 ◽  
2016 ◽  
Vol 31 (5) ◽  
pp. 430-441 ◽  
Author(s):  
Tina Schwarzkopp ◽  
Ulrich Mayr ◽  
Kerstin Jost

Author(s):  
Jessika I. V. Buitenweg ◽  
Jaap M. J. Murre ◽  
K. Richard Ridderinkhof

AbstractAs the world’s population is aging rapidly, cognitive training is an extensively used approach to attempt improvement of age-related cognitive functioning. With increasing numbers of older adults required to remain in the workforce, it is important to be able to reliably predict future functional decline, as well as the individual advantages of cognitive training. Given the correlation between age-related decline and striatal dopaminergic function, we investigated whether eye blink rate (EBR), a non-invasive, indirect indicator of dopaminergic activity, could predict executive functioning (response inhibition, switching and working memory updating) as well as trainability of executive functioning in older adults. EBR was collected before and after a cognitive flexibility training, cognitive training without flexibility, or a mock training. EBR predicted working memory updating performance on two measures of updating, as well as trainability of working memory updating, whereas performance and trainability in inhibition and switching tasks could not be predicted by EBR. Our findings tentatively indicate that EBR permits prediction of working memory performance in older adults. To fully interpret the relationship with executive functioning, we suggest future research should assess both EBR and dopamine receptor availability among seniors.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2013 ◽  
Vol 19 (4) ◽  
pp. 180-191 ◽  
Author(s):  
Hanani Abdul Manan ◽  
Elizabeth A. Franz ◽  
Ahmad Nazlim Yusoff ◽  
Siti Zamratol-Mai Sarah Mukari

2021 ◽  
pp. 1-17
Author(s):  
Anna A. Matejko ◽  
Daniel Ansari

Abstract Visuospatial working memory (VSWM) plays an important role in arithmetic problem solving, and the relationship between these two skills is thought to change over development. Even though neuroimaging studies have demonstrated that VSWM and arithmetic both recruit frontoparietal networks, inferences about common neural substrates have largely been made by comparisons across studies. Little work has examined how brain activation for VSWM and arithmetic converge within the same participants and whether there are age-related changes in the overlap of these neural networks. In this study, we examined how brain activity for VSWM and arithmetic overlap in 38 children and 26 adults. Although both children and adults recruited the intraparietal sulcus (IPS) for VSWM and arithmetic, children showed more focal activation within the right IPS, whereas adults recruited the bilateral IPS, superior frontal sulcus/middle frontal gyrus, and right insula. A comparison of the two groups revealed that adults recruited a more left-lateralized network of frontoparietal regions for VSWM and arithmetic compared with children. Together, these findings suggest possible neurocognitive mechanisms underlying the strong relationship between VSWM and arithmetic and provide evidence that the association between VSWM and arithmetic networks changes with age.


Sign in / Sign up

Export Citation Format

Share Document