Serial dependence occurs at the level of both features and integrated object representations.

Author(s):  
Thérèse Collins
2019 ◽  
Author(s):  
Cora Fischer ◽  
Stefan Czoschke ◽  
Benjamin Peters ◽  
Benjamin Rahm ◽  
Jochen Kaiser ◽  
...  

AbstractVisual perception operates in an object-based manner, by integrating associated features via attention. Working memory allows a flexible access to a limited number of currently relevant objects, even when they are occluded or physically no longer present. Recently, it has been shown that we compensate for small changes of an object’s feature over memory episodes, which can support its perceptual stability. This phenomenon was termed ‘serial dependence’ and has mostly been studied in situations that comprised only a single relevant object. However, since we are typically confronted with situations where several objects have to be perceived and held in working memory, the central question of how we selectively create temporal stability of several objects has remained unsolved. As different objects can be distinguished by their accompanying context features, like their color or temporal position, we tested whether serial dependence is supported by the congruence of context features across memory episodes. Specifically, we asked participants to remember the motion directions of two sequentially presented colored dot fields per trial. At the end of a trial one motion direction was cued for continuous report either by its color (Experiment 1) or serial position (Experiment 2). We observed serial dependence, i.e., an attractive bias of currently toward previously memorized objects, between current and past motion directions that was clearly enhanced when items had the same color or serial position across trials. This bias was particularly pronounced for the context feature that was used for cueing and for the target of the previous trial. Together, these findings demonstrate that coding of current object representations depends on previous representations, especially when they share similar content and context features. Apparently the binding of content and context features is not completely erased after a memory episode, but it is carried over to subsequent episodes. As this reflects temporal dependencies in natural settings, the present findings reveal a mechanism that integrates corresponding bundles of content and context features to support stable representations of individualized objects over time.


Author(s):  
Elise L. Radtke ◽  
Ulla Martens ◽  
Thomas Gruber

AbstractWe applied high-density EEG to examine steady-state visual evoked potentials (SSVEPs) during a perceptual/semantic stimulus repetition design. SSVEPs are evoked oscillatory cortical responses at the same frequency as visual stimuli flickered at this frequency. In repetition designs, stimuli are presented twice with the repetition being task irrelevant. The cortical processing of the second stimulus is commonly characterized by decreased neuronal activity (repetition suppression). The behavioral consequences of stimulus repetition were examined in a companion reaction time pre-study using the same experimental design as the EEG study. During the first presentation of a stimulus, we confronted participants with drawings of familiar object images or object words, respectively. The second stimulus was either a repetition of the same object image (perceptual repetition; PR) or an image depicting the word presented during the first presentation (semantic repetition; SR)—all flickered at 15 Hz to elicit SSVEPs. The behavioral study revealed priming effects in both experimental conditions (PR and SR). In the EEG, PR was associated with repetition suppression of SSVEP amplitudes at left occipital and repetition enhancement at left temporal electrodes. In contrast, SR was associated with SSVEP suppression at left occipital and central electrodes originating in bilateral postcentral and occipital gyri, right middle frontal and right temporal gyrus. The conclusion of the presented study is twofold. First, SSVEP amplitudes do not only index perceptual aspects of incoming sensory information but also semantic aspects of cortical object representation. Second, our electrophysiological findings can be interpreted as neuronal underpinnings of perceptual and semantic priming.


2021 ◽  
Vol 182 ◽  
pp. 9-19
Author(s):  
Kaitlyn Turbett ◽  
Romina Palermo ◽  
Jason Bell ◽  
Dewi Anna Hanran-Smith ◽  
Linda Jeffery

2013 ◽  
Vol 4 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Rachael D. Rubin ◽  
Samantha A. Chesney ◽  
Neal J. Cohen ◽  
Brian D. Gonsalves

1985 ◽  
Vol 59 (5) ◽  
pp. 1566-1570 ◽  
Author(s):  
D. F. Donnelly ◽  
W. F. Nolan ◽  
E. J. Smith ◽  
R. E. Dutton

The carotid body impulse generator has been previously characterized as a Poisson-type random process. We examined the validity of this characterization by analyzing sinus nerve spike trains for interspike interval dependency. Fifteen single chemoreceptive afferents were recorded in vivo under hypoxic-hypercapnic conditions, and approximately 1,000 consecutive interspike intervals for each fiber were timed and analyzed for serial dependence. The same set of intervals placed in shuffled order served as a control series without serial dependence. The original spike interval trains showed significantly negative first-order serial correlation coefficients and less variability in joint interval distributions than did the shuffled interval trains. These results suggest that the chemoreceptor afferent train is not random and may reflect a negative feedback system operating within the carotid body that limits variation about a mean frequency.


Sign in / Sign up

Export Citation Format

Share Document