Lend an ear to a classic tale of mammalian evolution

Nature ◽  
2021 ◽  
Vol 590 (7845) ◽  
pp. 224-226
Author(s):  
Simone Hoffmann
Keyword(s):  
Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 238
Author(s):  
Malgorzata Kloc ◽  
Ahmed Uosef ◽  
Jacek Z. Kubiak ◽  
Rafik M. Ghobrial

Human placenta formation relies on the interaction between fused trophoblast cells of the embryo with uterine endometrium. The fusion between trophoblast cells, first into cytotrophoblast and then into syncytiotrophoblast, is facilitated by the fusogenic protein syncytin. Syncytin derives from an envelope glycoprotein (ENV) of retroviral origin. In exogenous retroviruses, the envelope glycoproteins coded by env genes allow fusion of the viral envelope with the host cell membrane and entry of the virus into a host cell. During mammalian evolution, the env genes have been repeatedly, and independently, captured by various mammalian species to facilitate the formation of the placenta. Such a shift in the function of a gene, or a trait, for a different purpose during evolution is called an exaptation (co-option). We discuss the structure and origin of the placenta, the fusogenic and non-fusogenic functions of syncytin, and the mechanism of cell fusion. We also comment on an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin and the SARS-CoV-2 spike protein.


Genetics ◽  
1997 ◽  
Vol 147 (1) ◽  
pp. 289-296 ◽  
Author(s):  
Jason Ehrlich ◽  
David Sankoff ◽  
Joseph H Nadeau

Abstract An important problem in comparative genome analysis has been defining reliable measures of synteny conservation. The published analytical measures of synteny conservation have limitations. Nonindependence of comparisons, conserved and disrupted syntenies that are as yet unidentified, and redundant rearrangements lead to systematic errors that tend to overestimate the degree of conservation. We recently derived methods to estimate the total number of conserved syntenies within the genome, counting both those that have already been described and those that remain to be discovered. With this method, we show that ~65% of the conserved syntenies have already been identified for humans and mice, that rates of synteny disruption vary ~25-fold among mammalian lineages, and that despite strong selection against reciprocal translocations, inter-chromosome rearrangements occurred approximately fourfold more often than inversions and other intra-chromosome rearrangements, at least for lineages leading to humans and mice.


2013 ◽  
Vol 12 (6) ◽  
pp. 339-354 ◽  
Author(s):  
Heather F. Smith ◽  
William Parker ◽  
Sanet H. Kotzé ◽  
Michel Laurin
Keyword(s):  

2011 ◽  
Vol 210 (2807) ◽  
pp. 15
Author(s):  
Michael Marshall
Keyword(s):  

1987 ◽  
pp. 1-66 ◽  
Author(s):  
Carleton J. Phillips ◽  
Bernard Tandler

2017 ◽  
Vol 114 (35) ◽  
pp. 9403-9408 ◽  
Author(s):  
Elodie Renvoisé ◽  
Kathryn D. Kavanagh ◽  
Vincent Lazzari ◽  
Teemu J. Häkkinen ◽  
Ritva Rice ◽  
...  

Much of the basic information about individual organ development comes from studies using model species. Whereas conservation of gene regulatory networks across higher taxa supports generalizations made from a limited number of species, generality of mechanistic inferences remains to be tested in tissue culture systems. Here, using mammalian tooth explants cultured in isolation, we investigate self-regulation of patterning by comparing developing molars of the mouse, the model species of mammalian research, and the bank vole. A distinct patterning difference between the vole and the mouse molars is the alternate cusp offset present in the vole. Analyses of both species using 3D reconstructions of developing molars and jaws, computational modeling of cusp patterning, and tooth explants cultured with small braces show that correct cusp offset requires constraints on the lateral expansion of the developing tooth. Vole molars cultured without the braces lose their cusp offset, and mouse molars cultured with the braces develop a cusp offset. Our results suggest that cusp offset, which changes frequently in mammalian evolution, is more dependent on the 3D support of the developing jaw than other aspects of tooth shape. This jaw–tooth integration of a specific aspect of the tooth phenotype indicates that organs may outsource specific aspects of their morphology to be regulated by adjacent body parts or organs. Comparative studies of morphologically different species are needed to infer the principles of organogenesis.


Science ◽  
2018 ◽  
Vol 363 (6422) ◽  
pp. 78-80 ◽  
Author(s):  
Tomasz Sulej ◽  
Grzegorz Niedźwiedzki

Here, we describe the dicynodontLisowicia bojani, from the Late Triassic of Poland, a gigantic synapsid with seemingly upright subcursorial limbs that reached an estimated length of more than 4.5 meters, height of 2.6 meters, and body mass of 9 tons.Lisowiciais the youngest undisputed dicynodont and the largest nondinosaurian terrestrial tetrapod from the Triassic. The lack of lines of arrested growth and the highly remodeled cortex of its limb bones suggest permanently rapid growth and recalls that of dinosaurs and mammals. The discovery ofLisowiciaoverturns the established picture of the Triassic megaherbivore radiation as a phenomenon restricted to dinosaurs and shows that stem-group mammals were capable of reaching body sizes that were not attained again in mammalian evolution until the latest Eocene.


Sign in / Sign up

Export Citation Format

Share Document