scholarly journals A Dual Role for Nitric Oxide in NMDA-Mediated Toxicity in vivo

1995 ◽  
Vol 15 (6) ◽  
pp. 904-913 ◽  
Author(s):  
Mordecai Y.-T. Globus ◽  
Ricardo Prado ◽  
J. Sanchez-Ramos ◽  
Weizhao Zhao ◽  
W. Dalton Dietrich ◽  
...  

Nitric oxide has been implicated in N-methyl-d-aspartate (NMDA)-mediated damage in vitro; however, its role in excitotoxic damage in vivo is not clear. In the present study we evaluated the histopathological and hemodynamic consequences of intrastriatal injections of various doses of NMDA and determined the effects of nitric oxide synthase inhibition on these changes. NMDA was injected into the striatum at doses of 50, 150, and 300 nmol with or without Nω-nitro-l-arginine methyl ester (L-NAME; 100 μg, locally). Three days following injections histopathological assessment was performed by morphometric analysis of the lesion area in multiple sections taken from the anterior to the posterior borders of the lesion. In animals injected with 150 and 300 nmol of NMDA (±L-NAME), local CBF (lCBF) was determined 30 min following injections using 14C-iodoantipyrine autoradiography. All NMDA-treated animals showed a well-demarcated lesion extending beyond the injection site. The volume of the lesion correlated significantly with the NMDA dose injected. The effects of L-NAME on lesion size were dependent on the dose of the NMDA. The lesion induced by 50 nmol of NMDA was not affected by L-NAME. With a dose of 150 nmol of NMDA, L-NAME induced a 43% increase in lesion volume. In contrast, a 38% decrease in lesion size was observed in animals treated with 300 nmol of NMDA combined with L-NAME. At a dose of 150 nmol, NMDA induced a significant elevation in lCBF, which was restricted to regions close to the injection site including the center areas of the anterior and middle striatum. The increase in lCBF observed with 150 nmol of NMDA was significantly attenuated in the NMDA + L-NAME-treated group. The lCBF changes induced by 300 nmol of NMDA were not significantly different from those in the 150-nmol group; however, the extent of the regions involved was larger. The increases in lCBF were observed in all striatal regions including the central and peripheral areas. L-NAME did not have a significant effect on the lCBF changes induced by NMDA at a dose of 300 nmol. These data suggest that in vivo the involvement of nitric oxide in NMDA toxicity depends on the NMDA dose and on the participation of hemodynamic mechanisms secondary to NMDA exposure.

2018 ◽  
Vol 60 (No. 8) ◽  
pp. 359-366
Author(s):  
J. Li ◽  
B. Shi ◽  
S. Yan ◽  
L. Jin ◽  
Y. Guo ◽  
...  

The effects of chitosan on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) activity and gene expression in vivo or vitro were investigated in weaned piglets. In vivo, 180 weaned piglets were assigned to five dietary treatments with six replicates. The piglets were fed on a basal diet supplemented with 0 (control), 100, 500, 1000, and 2000 mg chitosan/kg feed, respectively. In vitro, the peripheral blood mononuclear cells (PBMCs) from a weaned piglet were cultured respectively with 0 (control), 40, 80, 160, and 320 µg chitosan/ml medium. Results showed that serum NO concentrations on days 14 and 28 and iNOS activity on day 28 were quadratically improved with increasing chitosan dose (P < 0.05). The iNOS mRNA expressions were linearly or quadratically enhanced in the duodenum on day 28, and were improved quadratically in the jejunum on days 14 and 28 and in the ileum on day 28 (P < 0.01). In vitro, the NO concentrations, iNOS activity, and mRNA expression in unstimulated PBMCs were quadratically enhanced by chitosan, but the improvement of NO concentrations and iNOS activity by chitosan were markedly inhibited by N-(3-[aminomethyl] benzyl) acetamidine (1400w) (P < 0.05). Moreover, the increase of NO concentrations, iNOS activity, and mRNA expression in PBMCs induced by lipopolysaccharide (LPS) were suppressed significantly by chitosan (P < 0.05). The results indicated that the NO concentrations, iNOS activity, and mRNA expression in piglets were increased by feeding chitosan in a dose-dependent manner. In addition, chitosan improved the NO production in unstimulated PBMCs but inhibited its production in LPS-induced cells, which exerted bidirectional regulatory effects on the NO production via modulated iNOS activity and mRNA expression.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Belinda A Di Bartolo ◽  
Sian P Cartland ◽  
Leonel Prado-Lourenco ◽  
Nor Saadah M Azahri ◽  
Thuan Thai ◽  
...  

Background: Angiogenesis and neovascularization are essential processes that follow ischemia insults. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) not only induces endothelial cell (EC) death and inhibits angiogenesis, but also promotes EC migration, invasion and proliferation in vitro . These seemingly opposite effects make its role in angiogenesis in vivo unclear. Using TRAIL -/- and wild-type mice, we sought to determine the role of TRAIL in angiogenesis and neovascularisation. We also sought mechanisms in vitro . Methods and Results: Reduced vascularisation assessed by real-time in vivo 3D Vevo ultrasound imaging and CD31 staining was observed in TRAIL -/- mice 28 d after hindlimb ischemia. Moreover, reduced capillary formation and increased apoptosis was evident in TRAIL -/- muscles even at 3 d after ischemic surgery. We have previously shown that fibroblast growth factor-2 (FGF-2), a potent angiogenic factor, regulates TRAIL gene expression in vascular smooth muscle cells. Indeed, FGF-2 also regulates TRAIL expression in ECs, and FGF-2-inducible proliferation, migration and tubule formation was inhibited with siRNA targeting TRAIL. Notably, both FGF-2 and TRAIL significantly increased NOX4 expression. TRAIL-inducible angiogenic activity in ECs was inhibited with siRNAs targeting NOX4, and consistent with these, NOX4 mRNA was reduced in 3 d ischemic hindlimbs of TRAIL -/- mice. TRAIL stimulated intracellular H 2 O 2 levels in ECs, and TRAIL-inducible proliferation, migration and tubule formation was inhibited with not only PEG-catalase, a H 2 O 2 scavenger, but also blocked with L-NAME, a nitric oxide synthase inhibitor. Conclusions: This is the first demonstration showing that TRAIL promotes angiogenesis in vivo . We show for the first time that the TRAIL stimulates NOX4 expression to mediate nitric oxide-dependent angiogenic effects. This has significant therapeutic implications such that TRAIL may improve the angiogenic response to ischemia and increase perfusion recovery in patients with CVD and diabetes.


Alcohol ◽  
1994 ◽  
Vol 11 (6) ◽  
pp. 539-547 ◽  
Author(s):  
Stanley S. Greenberg ◽  
Jianming Xie ◽  
Ye Wang ◽  
Jay Kolls ◽  
Tadeus Malinski ◽  
...  

2005 ◽  
Vol 33 (4) ◽  
pp. 701-704 ◽  
Author(s):  
K. Kashfi ◽  
B. Rigas

Nitric-oxide-donating aspirin (NO-ASA), consisting of ASA (aspirin) plus an -ONO2 moiety linked to it via a molecular spacer, is a new drug for cancer prevention. NO-ASA seems to overcome the low potency and toxicity of traditional ASA. The -ONO2 moiety is responsible for releasing NO, and it appears to be required for biological activity. In studies in vitro, NO-ASA inhibits the growth of colon, pancreatic, prostate, lung, skin, leukaemia and breast cancer cells, and is up to 6000-fold more potent than traditional ASA. This effect is owing to cell kinetics [inhibition of proliferation, induction of apoptosis (multiple criteria) and blocking the G1 to S cell-cycle transition] and cell signalling [inhibition of Wnt signalling (IC50=0.2 μM), inhibition of NF-κB (nuclear factor κB) activation (IC50=7.5 μM), inhibition of nitric oxide synthase-2 expression (IC50=48 μM), inhibition of MAPK (mitogen-activated protein kinase) signalling (IC50=10 μM) and induction of cyclo-oxygenase-2 at approx. 10 μM]. In studies in vivo, NO-ASA inhibits intestinal carcinogenesis in Min mice (tumour multiplicity was reduced by 59% after 3 weeks, with no effect in control animals and no side effects) and in the N-nitrosobis(2-oxopropyl)amine model of pancreatic cancer, where there was an 89% reduction in NO-ASA (3000 p.p.m. in the diet)-treated animals (P<0.001). There was no statistically significant effect by traditional ASA at equimolar doses. Our data indicate that NO-ASA is a highly promising agent for the prevention and/or treatment of cancer.


1996 ◽  
Vol 108 (supplement) ◽  
pp. 115-120
Author(s):  
Yoshihisa KITAMURA ◽  
Hideaki TAKAHASHI ◽  
Yasuji MATSUOKA ◽  
Yasuyuki NOMURA ◽  
Takashi TANIGUCHI

2017 ◽  
Vol 312 (4) ◽  
pp. H854-H866 ◽  
Author(s):  
Jaimit Parikh ◽  
Adam Kapela ◽  
Nikolaos M. Tsoukias

We used mathematical modeling to investigate nitric oxide (NO)-dependent vasodilatory signaling in the arteriolar wall. Detailed continuum cellular models of calcium (Ca2+) dynamics and membrane electrophysiology in smooth muscle and endothelial cells (EC) were coupled with models of NO signaling and biotransport in an arteriole. We used this theoretical approach to examine the role of endothelial hemoglobin-α (Hbα) as a modulator of NO-mediated myoendothelial feedback, as previously suggested in Straub et al. ( Nature 491: 473–477, 2012). The model considers enriched expression of inositol 1,4,5-triphosphate receptors (IP3Rs), endothelial nitric oxide synthase (eNOS) enzyme, Ca2+-activated potassium (KCa) channels and Hbα in myoendothelial projections (MPs) between the two cell layers. The model suggests that NO-mediated myoendothelial feedback is plausible if a significant percentage of eNOS is localized within or near the myoendothelial projection. Model results show that the ability of Hbα to regulate the myoendothelial feedback is conditional to its colocalization with eNOS near MPs at concentrations in the high nanomolar range (>0.2 μM or 24,000 molecules). Simulations also show that the effect of Hbα observed in in vitro experimental studies may overestimate its contribution in vivo, in the presence of blood perfusion. Thus, additional experimentation is required to quantify the presence and spatial distribution of Hbα in the EC, as well as to test that the strong effect of Hbα on NO signaling seen in vitro, translates also into a physiologically relevant response in vivo. NEW & NOTEWORTHY Mathematical modeling shows that although regulation of nitric oxide signaling by hemoglobin-α (Hbα) is plausible, it is conditional to its presence in significant concentrations colocalized with endothelial nitric oxide synthase in myoendothelial projections. Additional experimentation is required to test that the strong effect of Hbα seen in vitro translates into a physiologically relevant response in vivo


Sign in / Sign up

Export Citation Format

Share Document