scholarly journals WT1 peptide-specific T cells generated from peripheral blood of healthy donors: possible implications for adoptive immunotherapy after allogeneic stem cell transplantation

Leukemia ◽  
2009 ◽  
Vol 23 (9) ◽  
pp. 1634-1642 ◽  
Author(s):  
G Weber ◽  
J Karbach ◽  
S Kuçi ◽  
H Kreyenberg ◽  
A Willasch ◽  
...  
Hemato ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 692-702
Author(s):  
Ann-Kristin Schmaelter ◽  
Johanna Waidhauser ◽  
Dina Kaiser ◽  
Tatjana Lenskaja ◽  
Stefanie Gruetzner ◽  
...  

Donor lymphocyte infusion (DLI) after allogeneic stem cell transplantation (alloSCT) is an established method to enhance the Graft-versus-Leukemia (GvL) effect. However, alterations of cellular subsets in the peripheral blood of DLI recipients have not been studied. We investigated the changes in lymphocyte subpopulations in 16 patients receiving DLI after successful alloSCT. Up to three DLIs were applied in escalating doses, prophylactically for relapse prevention in high-risk disease (n = 5), preemptively for mixed chimerism and/or a molecular relapse/persistence (n = 8), or as part of treatment for hematological relapse (n = 3). We used immunophenotyping to measure the absolute numbers of CD4+, CD8+, NK, and CD56+ T cells and their respective subsets in patients’ peripheral blood one day before DLI (d-1) and compared the results at day + 1 and + 7 post DLI to the values before DLI. After the administration of 1 × 106 CD3+ cells/kg body weight, we observed an overall increase in the CD8+ and CD56+ T cell counts. We determined significant changes between day − 1 compared to day + 1 and day + 7 in memory and activated CD8+ subsets and CD56+ T cells. Applying a higher dose of DLI (5 × 106 CD3+ cells/kg) led to a significant increase in the overall counts and subsets of CD8+, CD4+, and NK cells. In conclusion, serial immune phenotyping in the peripheral blood of DLI recipients revealed significant changes in immune effector cells, in particular for various CD8+ T cell subtypes, indicating proliferation and differentiation.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4595-4595
Author(s):  
Karolyn Oetjen ◽  
Cai Chen ◽  
Christian Bradley ◽  
Reema Panjwani ◽  
Cheng Yan ◽  
...  

Abstract INTRODUCTION: The potent graft versus leukemia (GVL) effect of allogeneic stem cell transplantation (allo-SCT) is considered as a blueprint for cellular immunotherapy. However, failure of GVL leads to relapse of underlying leukemia, the major cause of death after allo-SCT. In solid tumors, higher tumor mutation burdens are associated with better response to check point inhibitors which implies the importance of neoantigen specific T-cell functions in cancer immunity. In contrast, the frequencies of somatic mutations in acute leukemia are generally low, therefore the role of neoantigens in GVL remains undetermined. Here, we developed a platform to screen for potential neoantigens by performing whole exome sequencing (WES) and RNA sequencing (RNAseq) in matched samples: leukemic blasts at relapse after allo-SCT, recipient T cell controls, and donor cells. METHODS: Leukemic blasts from patients in relapse were enriched by flow sorting from bone marrow aspirate or peripheral blood samples. Recipient T cells were isolated from pre-transplant peripheral blood as germline controls, and donor monocytes or CD34-positive cells were used as hematopoietic-lineage cell controls. WES was performed to 100X coverage, paired with RNAseq 40M reads per sample. Somatic mutations were detected with mutect and mpileup, followed by annotation with SnpEff. High confidence somatic mutations were subjected to pVAC-seq for neoantigen predictions. RESULTS: Six patients with relapsed acute leukemia (AML 5, ALL 1) after allo-SCT and their transplant donors (matched sibling 3, haplo-identical 3) had suitable samples available for analysis. On average, somatic mutations were identified in 297 genes (range 108- 609) by comparing leukemic blasts and germline control T cells. Among those mutations, potential candidates of neoantigen were identified in five out of six subjects. Allele frequencies of mutant genes varied. Most of neoantigens were predicted to bind HLA of both class I (median 5, range 0-15) and class II (median 6, range 0-12). One subject had only HLA class II restricted peptides as predicted neoantigens. Of interest majority of antigens were derived from molecules known to play important roles in leukemia or tumor biology which include ETV6, CCNY, IDH2, PTPN11, SF3B1, and TP53. Evolution analysis of neoantigen showed an emergence of new antigens in relapsed leukemia while a few driver gene mutations persisted after allo-SCT (Figure). CONCLUSION: Our in-silico analysis demonstrated the possibility that somatic mutation in acute leukemia could serve as putative neoantigens applicable for novel immunotherapy after allo-SCT. The binding capacity of mutant peptides to class I and II HLA implies the importance of both CD4 and CD8 contributions to anti-neoantigen immunity. Next, we will search for neoantigen specific T cells exerting an anti-leukemia effect to validate the GVL potential of these mutations in allo-SCT. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 121 (18) ◽  
pp. 3745-3758 ◽  
Author(s):  
Emily Blyth ◽  
Leighton Clancy ◽  
Renee Simms ◽  
Chun K. K. Ma ◽  
Jane Burgess ◽  
...  

Key Points Infusion of CMV-specific T cells early posttransplant does not increase acute or chronic graft-versus-host disease. CMV-specific T cells early posttransplant reduce the need for pharmacotherapy without increased rates of CMV-related organ damage.


PLoS ONE ◽  
2008 ◽  
Vol 3 (11) ◽  
pp. e3634 ◽  
Author(s):  
Thomas Widmann ◽  
Urban Sester ◽  
Barbara C. Gärtner ◽  
Jörg Schubert ◽  
Michael Pfreundschuh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document