scholarly journals Mitoxantrone, etoposide and cytarabine following epigenetic priming with decitabine in adults with relapsed/refractory acute myeloid leukemia or other high-grade myeloid neoplasms: a phase 1/2 study

Leukemia ◽  
2017 ◽  
Vol 31 (12) ◽  
pp. 2560-2567 ◽  
Author(s):  
A B Halpern ◽  
M Othus ◽  
E M Huebner ◽  
S A Buckley ◽  
E L Pogosova-Agadjanyan ◽  
...  
Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1364-1364 ◽  
Author(s):  
Anna B. Halpern ◽  
Megan Othus ◽  
Kelda Gardner ◽  
Genevieve Alcorn ◽  
Mary-Elizabeth M. Percival ◽  
...  

Background: Optimal treatment for medically less fit adults with acute myeloid leukemia (AML) remains uncertain. Retrospective data suggest intensive therapy may lead to better outcomes in these patients. However, these findings must be interpreted cautiously because of the possibility of selection bias and other confounders. Ideally, the optimal treatment intensity is defined via randomized trial but whether patients and their physicians are amenable to such a study is unknown. We therefore designed a trial (NCT03012672) to 1) evaluate the feasibility of randomization between intensive and non-intensive therapy in this population and 2) examine the impact of treatment intensity on response rate and survival. We used CLAG-M as high-dose cytarabine-based intensive induction therapy. Rather than selecting different classes of drugs in the 2 treatment arms- which may have different modes of action and therefore confound the question of treatment intensity - we used reduced-dose ("mini") CLAG-M as the non-intensive comparator. Methods: Adults ≥18 years were eligible if they had untreated AML or high-grade myeloid neoplasms (≥10% blasts in blood or marrow) and were medically less fit as defined by having a "treatment related mortality" (TRM) score of ≥13.1, corresponding to a >10-15% 28-day mortality with intensive chemotherapy. Left ventricular ejection fraction ≤45% was the only organ function exclusion. Patient-physician pairs were first asked if they were amenable to randomized treatment allocation. If so, they were randomized 1:1 to mini- vs. regular-dose CLAG-M. If not, in order to evaluate our secondary endpoints, the patient or physician could choose the treatment arm and still enroll on study. Patients and physicians then completed surveys elucidating their decision-making processes. Up to 2 induction courses were given with mini- vs. regular-dose CLAG-M: cladribine 2 or 5 mg/m2/day (days 1-5), cytarabine 100 or 2,000 mg/m2/day (days 1-5), G-CSF 300 or 480µcg/day for weight </≥76kg in both arms (days 0-5), and mitoxantrone 6 or 18 mg/m2/day (days 1-3). CLAG at identical doses was used for post-remission therapy for up to 4 (regular-dose CLAG) or 12 (mini-CLAG) cycles. The primary endpoint was feasibility of randomization, defined as ≥26/50 of patient-physician pairs agreeing to randomization. Secondary outcomes included rate of complete remission (CR) negative for measurable ("minimal") residual disease (MRD), rate of CR plus CR with incomplete hematologic recovery (CR+CRi), and overall survival (OS). Results: This trial enrolled 33 patients. Only 3 (9%) patient/physician pairs agreed to randomization and thus randomization was deemed infeasible (primary endpoint). Eighteen pairs chose mini-CLAG-M and 12 regular-dose CLAG-M for a total of 19 subjects in the lower dose and 14 subjects in the higher dose arms. The decision favoring lower dose treatment was made largely by the physician in 5/18 (28%) cases, the patient in 11/18 (61%) cases and both in 2/18 (11%). The decision favoring the higher dose arm was made by the patient in most cases 9/12 (75%), both physician and patient in 2/12 (16%) and the physician in only 1/12 (8%) cases. Despite the limitations of lack of randomization, patients' baseline characteristics were well balanced with regard to age, performance status, TRM score, lab values and cytogenetic/mutational risk categories (Table 1). One patient was not yet evaluable for response or TRM at data cutoff. Rates of MRDneg CR were comparable: 6/19 (32%) in the lower and 3/14 (21%) in the higher dose groups (p=0.70). CR+CRi rates were also similar in both arms (43% vs. 56% in lower vs. higher dose arms; p=0.47). Three (16%) patients experienced early death in the lower dose arm vs. 1 (7%) in the higher dose arm (p=0.43). With a median follow up of 4.2 months, there was no survival difference between the two groups (median OS of 6.1 months in the lower vs. 4.7 months in the higher dose arm; p=0.81; Figure 1). Conclusions: Randomization of medically unfit patients to lower- vs. higher-intensity therapy was not feasible, and physicians rarely chose higher intensity therapy in this patient group. Acknowledging the limitation of short follow-up time and small sample size, our trial did not identify significant differences in outcomes between intensive and non-intensive chemotherapy. Analysis of differences in QOL and healthcare resource utilization between groups is ongoing. Disclosures Halpern: Pfizer Pharmaceuticals: Research Funding; Bayer Pharmaceuticals: Research Funding. Othus:Celgene: Other: Data Safety and Monitoring Committee. Gardner:Abbvie: Speakers Bureau. Percival:Genentech: Membership on an entity's Board of Directors or advisory committees; Pfizer Inc.: Research Funding; Nohla Therapeutics: Research Funding. Scott:Incyte: Consultancy; Novartis: Consultancy; Agios: Consultancy; Celgene: Consultancy. Becker:AbbVie, Amgen, Bristol-Myers Squibb, Glycomimetics, Invivoscribe, JW Pharmaceuticals, Novartis, Trovagene: Research Funding; Accordant Health Services/Caremark: Consultancy; The France Foundation: Honoraria. Oehler:Pfizer Inc.: Research Funding; Blueprint Medicines: Consultancy. Walter:BioLineRx: Consultancy; Astellas: Consultancy; Argenx BVBA: Consultancy; BiVictriX: Consultancy; Agios: Consultancy; Amgen: Consultancy; Amphivena Therapeutics: Consultancy, Equity Ownership; Boehringer Ingelheim: Consultancy; Boston Biomedical: Consultancy; Covagen: Consultancy; Daiichi Sankyo: Consultancy; Jazz Pharmaceuticals: Consultancy; Seattle Genetics: Research Funding; Race Oncology: Consultancy; Aptevo Therapeutics: Consultancy, Research Funding; Kite Pharma: Consultancy; New Link Genetics: Consultancy; Pfizer: Consultancy, Research Funding. OffLabel Disclosure: Cladribine is FDA-approved for Hairy Cell Leukemia. Here we describe its use for AML, where is is also widely used with prior publications supporting its use


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 658-658 ◽  
Author(s):  
Ronan T Swords ◽  
Harry P Erba ◽  
Daniel J DeAngelo ◽  
Peter G Smith ◽  
Michael D Pickard ◽  
...  

Abstract Abstract 658 Background: NEDD8-activating enzyme (NAE) regulates the NEDD8 conjugation pathway, and is required for the activity of the cullin-RING E3 ligases (CRLs). CRLs control the timed degradation of several substrates involved in cell-cycle regulation, signal transduction, DNA replication, and stress response, including proteins important for the survival of AML cells. We evaluated the preclinical anti-leukemic activity of MLN4924, a novel, investigational, first-in-class small molecule inhibitor of NAE, and based on the activity of MLN4924 in preclinical AML models (Swords RT et al, Blood 2010) we conducted a phase 1 study to evaluate the safety and tolerability of this agent in patients with AML and advanced MDS. Methods: The primary objectives of this study were to evaluate the safety and tolerability of MLN4924, to establish the maximum tolerated dose (MTD), and to determine the recommended phase 2 dose of MLN4924 in patients with AML and high-grade MDS. Secondary objectives included a preliminary assessment of efficacy, and analysis of pharmacokinetics and pharmacodynamics (via NAE-regulated proteins in peripheral blood mononuclear cells). Patients aged ≥18 years, with ECOG performance status 0–2, who had AML or high-grade MDS, and who were not candidates for potentially curative therapy, were eligible. MLN4924 was administered as a 60-minute IV infusion on days 1, 3, and 5 of a 21-day cycle for up to 12 months or until documented disease progression. Dose escalation was commenced at 25 mg/m2 and proceeded using a standard 3+3′ escalation method until the MTD was established. Response assessment was based on recently published guidelines (Döhner H et al, Blood 2010) and adverse events (AEs) were graded per National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events v3.0 (NCI Cancer Therapy Evaluation Program, 2006). Results: To date, 15 patients (9 males, 6 females; 14 AML, 1 high-grade MDS) have been enrolled and treated, including 3, 4, 3, 3, and 2 at dose levels of 25, 33, 44, 59, and 78 mg/m2, respectively. Median age was 62.3 years (range 29.3–84.0 years). By cytogenetics, 1 (7%), 5 (33%), and 7 (47%) patients had good-, intermediate-, and poor-risk disease (not available in 2). Prior antineoplastic therapies included cytarabine (n=7), azacitidine, daunorubicin (n=3 each), decitabine, etoposide, gemtuzumab, idarubicin, and mitoxantrone (n=2 each). To date, 3 patients have received ≥8 cycles; 6 remain on treatment. Two dose-limiting toxicities have been reported at the 78 mg/m2 dose level: one patient with multi-organ failure in Cycle 2, and one with reversible elevation of alanine aminotransferase in Cycle 1. The most common AEs were pneumonia (n=6), atelectasis, constipation, diarrhea, and febrile neutropenia (each n=4); most common grade ≥3 AEs were febrile neutropenia (n=4), elevated aspartate aminotransferase, and pneumonia (each n=3). Three patients have achieved a complete response (CR) to date. A 29-year-old woman with relapsed AML following allogeneic stem cell transplantation achieved a CR after cycle 1 at 25 mg/m2 before developing progressive disease at an extramedullary site during cycle 8. An 82-year-old man with history of high-risk MDS, which was unresponsive to azacitidine, that evolved into AML had a partial response in cycle 8 and a CR with incomplete recovery of blood counts (CRi) in cycle 10 at 33 mg/m2; the patient is currently in cycle 12 and has become transfusion-independent. A 71-year-old man with de-novo AML refractory to standard cytarabine plus daunorubicin induction achieved a CRi during cycle 1 at 44 mg/m2; although this was not maintained, the patient continued to benefit from treatment and is currently in cycle 11 with reduced transfusion dependence. Pharmacodynamic data are available for 9 patients; 7 show evidence of target inhibition in peripheral blood by changes in NAE-regulated proteins. Conclusion: The preliminary findings of this study indicate that the novel mechanism of action of MLN4924 through NAE inhibition results in observed activity in patients with relapsed or refractory AML, and suggest the successful translation of preclinical research in AML models into the clinic. Enrollment continues in expanded cohorts of AML and MDS patients at 59 mg/m2. Updated efficacy and safety data will be presented, together with data on MLN4924 pharmacokinetics and pharmacodynamics. Disclosures: Off Label Use: Investigational agent in clinical development for the treatment of acute myeloid leukemia or myelodysplastic syndromes. Erba:Millennium Pharmaceuticals, Inc.: Research Funding. DeAngelo:Deminimus: Consultancy. Smith:Millennium Pharmaceuticals, Inc.: Employment. Pickard:Millennium Pharmaceuticals, Inc.: Employment. Dezube:Millennium Pharmaceuticals: Employment, Equity Ownership. Giles:Millennium Pharmaceuticals, Inc.: Research Funding. Medeiros:Millennium Pharmaceuticals, Inc.: Consultancy, Research Funding.


2019 ◽  
Vol 3 (13) ◽  
pp. 1939-1949 ◽  
Author(s):  
Harry P. Erba ◽  
Pamela S. Becker ◽  
Paul J. Shami ◽  
Michael R. Grunwald ◽  
Donna L. Flesher ◽  
...  

AbstractThis open-label, phase 1 study evaluated the safety, pharmacokinetics, and maximum tolerated dose of AMG 232, an investigational oral, selective mouse double minute 2 homolog inhibitor in relapsed/refractory acute myeloid leukemia (AML). AMG 232 was administered orally once daily for 7 days every 2 weeks (7 on/off) at 60, 120, 240, 360, 480, or 960 mg as monotherapy (arm 1) or at 60 mg with trametinib 2 mg (arm 2). Dose-limiting toxicities (DLTs), adverse events (AEs), pharmacokinetics, clinical and pharmacodynamic response, and expression of p53 target genes were assessed. All 36 patients received AMG 232. No DLTs occurred in arm 1, and 360 mg was the highest test dose; dose escalation was halted due to gastrointestinal AEs at higher doses. One of ten patients in arm 2 had a DLT (grade 3 fatigue); 60 mg was the highest dose tested with trametinib. Common treatment-related AEs (any grade) included nausea (58%), diarrhea (56%), vomiting (33%), and decreased appetite (25%). AMG 232 exhibited linear pharmacokinetics unaffected by coadministration with trametinib. Serum macrophage inhibitor cytokine-1 and bone marrow expression of BAX, PUMA, P21, and MDM2 increased during treatment. Of 30 evaluable patients, 1 achieved complete remission, 4 had morphologic leukemia-free state, and 1 had partial remission. Four of 13 (31%) TP53-wild-type patients and 0 of 3 (0%) TP53-mutant patients were responders. AMG 232 was associated with gastrointestinal AEs at higher doses but had acceptable pharmacokinetics, on-target effects, and promising clinical activity warranting further investigation in patients with relapsed/refractory AML. This trial was registered at www.clinicaltrials.gov as #NCT02016729.


Sign in / Sign up

Export Citation Format

Share Document